PHY 337/637 Analytical Mechanics
12:30-1:45 PM TR in Olin 103

Notes for Lecture 14
Course review

Calculus of variation methodology
Lagrangian formalism
Hamiltonian formalism

Dynamics of rigid bodies

o oD~

Scattering theory

Exams returned at the end of class

10/17/2023 PHY 337/637 Fall 2023 -- Lecture 14



Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook section listing
practice problems to be discussed at the course tutorials, and Assign is a link to the graded homework for the
lecture. The graded homeworks are due each Tuesday following the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading |Topic PP |Assign

1 [Tu, 8/29/2023 |Ch.1 & 2 |Introduction, history, and motivation 2E [#1

2 |Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation S5E |#2

3 [Tu, 9/05/2023 |Ch.5 More examples of the calculus of variation |SE [#3

4 Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E |#4

5 |Tu, 9/12/2023 |Ch.7 & 8 |Hamiltonian mechanics 8E [#5

6 [Th, 9/14/2023 |Ch. 7 & 8 |Hamiltonian mechanics 8E

7 |Tu, 9/19/2023 |Ch. 13 Dynamics of rigid bodies 13E |#6

8 |Th, 9/21/2023 |Ch. 13 Dynamics of rigid bodies 13E [#7

9 Tu, 9/26/2023 |Ch. 13 & 11 |Review of rigid bodies and intro to scattering |11E |#8

10 Th, 9/28/2023 |Ch. 11 Scattering theory 11E [#9

11 [Tu, 10/3/2023 |Ch. 11 Scattering theory 11E

12 [Th, 10/5/2023 Summary and examples Take home exam start

13 Tu, 10/10/2023 Summary and examples Take home exam due
Th, 10/12/2023 |Fall Break

14 Tu, 10/17/2023 Summary and examples
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PHysics AND CHEMISTRY

THURSDAY

JoInT CoLLoQuiuM .
OcToBER 19TH, 2023

Molecular Photovoltaics and the Advent of Perovskite Solar
Cells

Photovoltaic cells using molecular dyes, semiconductor quantum
dots or perovskite pigments as light harvesters have emerged as
credible contenders to conventional devices. Dye sensitized solar
cells (DSCs) use a three-dimensional nanostructured junction for
photovoltaic electricity production and currently reach a power
conversion efficiency (PCE) of 15.2 % in full sunlight and over 30 % in
ambient light. They possess unique practical advantages in terms of
particularly high effective electricity production from ambient light,
ease of manufacturing, flexibility and transparency, bifacial light
harvesting, and aesthetic appeal, which have fostered large scale
industrial production and commercial applications. They served as a
launch pad for perovskite solar cells (PSCs) which are presently
being intensively investigated as one of the most promising future
PV technologies, the PCE of solution processed laboratory cells .
having currently reached 25.7%. Present research focuses on their M]Ch ael Gratzel
scale up to as well as ascertaining their long-term operational EPFL
stability. This lecture will cover the most recent findings in these )

Switzerland

revolutionary photovoltaic domains.

Note that lecture location is in

Salem Ha” 9 4 pm - Salem 012
10/17/2023 PHY 337/637 Fall 2023 "Flé?r%EHFl?e

r1t4_i served prior to seminar



Review of the concept of the calculus of variation

 Based on the notion of minimization, but
applied to an integral form
* Optimization performed to find a function —
such as y(x).
 Uses —
* Various optimization problems in a variety
of applications
« Optimizing the “action integral”
(Hamilton’s principle)
* Richard Feynman applied it to develop an
alternative approach to quantum
mechanics called path integrals



Functional minimization of an integral relationship
Consider a family of functions y(x), with fixed end points

Find the function y(x) which extremizes L ({ y(x), ﬂ} : xj.

Necessary condition: oL =0

11

Example: y 0'6::

1,1 ]
L= j\/(dx)2+(dy)2 ole—"or—
(0.0) 0 0.2 04 06 0.8

X



Example:
(L1)

L= [ J(dx) +(dv)

(0.0)

zwl{g_yjdx

10/17/2023

1

0.6-
y )

0=

0 02 04 06 0.8
X

Sample functions:

1
y (x)=+/x L:j,/1+4ixdx=1.4789
0

1
y,(xX) = x L:j\/1+1dx:\/§:1.4142
0

1
y,(x) = x sz\/1+4x2dx=1.4789
0
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After some derivations, we find

) A&
dx

X,y

).

rr
5L=j

of
Oy

k)
= | =
Y ). b

dx

Note that this is a
“total” derivative
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" dx

(8(dy/dx)

o
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*

dy/ dx)jx,y

Euler-Lagrange equation
=» Differential equation to find

=0 forallx, <x<x,

oydx =0 forallx, <x<x

y(x)

J

.dx
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Comment on partial derivatives versus total derivatives.

For a simple function y(¢), the notation means that y 1s

a function only of ¢ so that @ 1s well defined.

dt
For a more complicated function of several variables,

f(a(t),b(t),t) the notion of partial and total derivatives
needs to be considered.

df (a(1),b(t),t) _
dt

—+

—+
b,t dt

(af (a(?),b(), t)j da (8]‘ (a(?),b(2), t)j db (8]” (a(?),b(t),1)

ob

oa o At

ot

ja,b



Also note that

[ LAOLOD Y pate bt 11, FGate) b))

We are now going to shift notation in order to
apply the calculus of variation formalism to
Hamilton's principle and Lagrangian mechanics.
X —>1

y(x) > q(2)

dy

d_x_)Q(t)



Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

S = fL(q,q,t)dz EiL(y,%,tjdt where L=T-U

Simple example: vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

: d’
Newton's formulation: m y ; =—mg
5
Resultant trajectory: y(t)=y +vit—Lgr’

Lagrangian for this case:

1 (dy ’
L=T-U=—m|— | —m
2 (dtj &



Now consider the Lagrangian defined to be :

J’(f) — f
Kinetic Potential
energy energy

In our example:

o)==l ) e

Hamilton's principle states:

by
S = j L[{ y(t),%},tjdt 1s minimized for physical y(7) :
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Condition for minimizing the action 1in example:

(1 dy ’
S=\||—-m| —| - dt
(EREIR

Euler-Lagrange relations:

d .
:—mg—zmyzO

ddy 1 2
LA )=y +vi—1Lgt



Extension of these ideas to multiple coordinates due to
multiple dimensions and/or multiple particles.

1 particle with 1 5 many particles with
degree of freedom multiple degrees of
freedom

S:fL(q,q,z)dr = S=[L({g,}.4,}.t)dt
for exampltelb: L({g,}.1q,}.t)= L(x,y,z,)'c,j/,z',t)
1 particle+3 Cartesian dimensions
or L, itz X i 1451)

N particles+3 Cartesian dimensions
10/17/2023 PHY 337/637 Fall 2023 -- Lecture 14 13



Introducing the Hamiltonian --

Lagrangian picture
For independent generalized coordinates ¢_(#):

L=L({g, (O} 1g,®)}1)
d oL oL
dt 0q. Oq

= Second order differential equations for g_ ()

=0

o)

Switching variables — Legendre transformation

Define:  H =H({g, ()} {p,()}1)

L
szqo,pa—L WherepG:%

oL oL oL
dH =N dp +p di —dg - a5 |-ZL a
;(% p_ + pddq, ” q, 5 qgj >



Hamiltonian picture — continued

H=H({g,O}L{p, 0O}1)

H:Zc}(jpa—L where pJ:a—_L
> oq.,
oL oL oL
dH =S¢ dp +p di —dg - a5 |-ZLar
;(qg Pot Podiy = ~ddn = qaj >
— (a—qua—l—@—HdpG]+8—Hdt
~\0q,_ op., ot
_ ., _oH oL d oL .  OH oL _
T o, oq. di 0. 1" oq. o

10/17/2023
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Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L= L({g_(H)},{g.(6)},7)

: L
2. Compute generalized momenta: p_ = 8_

04,
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H ({% (t)}, { p. (1) }, t)
5. Analyze canonical equations of motion :
dq. OH dp,  OH

O

dt ~ op, dt ~ oq.




Example

dy |1 (dy ’ 1 (dy ’
H=p ——|—m| = | - ——m| = | +
p, % (Zm(dtj mgyj 2m(a’tj mgy

2

P
H(yapy)zﬁergy:TJrU
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Note that D’Alembert’s “justification” of the Lagrangian
approach relied on the potential not depending on the particle
velocities. We “derived” an exception to this for treating
forces due to magnetic fields and/or the vector potential A(r,f)

U=U, i) +qP(r,2)—gi- A(r,1)

m

Note that not all velocity-dependent forces can be treated
withing the Lagrangian formalism.



| orentz forces: , , ,
For particle of charge ¢ in an electric field E(r,7) and magnetic field B(r,z):

Lorentz force: F=g¢q (E + Vv X B) (in SI units)
x —component : F. = q(Ex +(vx B)x)
In this case, 1t 1S convenient to use cartesian coordinates

L=L(x,p,2,%7,2,t)=T-U Note: Here we are using

T — %m(ﬁ + 3% + Z'z) cartesian coordinates for
convenience.
(d oL 6Lj
x-component: — — =0
dt Ox Ox

oU d oU

Apparently: F =-— +
PP 5 T T dr o
Answer: U=q®(r,t)—gr-A(r,1)
OA (r,t)

where E(r,7)=-V®(r,t)- B(r,t)=VxA(r,t)

Ot



Example Lorentz force
L=1im(&+37 +2)—q®(r,t)+qi A(r,¢)
Suppose E(r,1)=0, B(r,t)= B,z
A(r,t)=1B (- y& +xy)

L :%m(ic2 + 37 +z’2)+iBo(—5cy+y'x)

2
i@_L_@_L =0 :d(mx—gBoyj qBOy 0
dt Ox Ox dt 2 2
ia_l.’_ﬁ_l’:() = — d (my—l—qB xj QBO)'CZO
dt 0y Oy dt 2 2
dob oL _ =0 :>imz'=O

dt 0z 0z dt



Example Lorentz force -- continued

L:%m(xz+)'/2+Zz)+§BO(—)'Cy+)'/x)

4 m)'c—gBy —iByzO —>mx—qB,y =0
dt 2 ") 27" !
o+ 5 |+9B =0 — mj+qB i =0
dt 2 ") 2" !
imz’zO —=>mz =0



Example Lorentz force -- continued

L=1m(i*+y*+2* )+ LB (—xy+ yx)

2
mx =+qB,y
my = —qB,x
mz =0

Note that same equations are obtained
from direct application of Newton's laws:

myr = qr x Bz



Example Lorentz force -- continued

Evaluation of equations:

mx—qB,y =0 X(I)stin(%t—l—¢)
my+4qByx =0 y'(t):VOcos(%t+¢)
mz = ()

z(t)=V,,



Constructing the Hamiltonian for this case

|
L(x,y,z,x,y,z')zam(xz—k)}z+Z'2)+%BO(—5cy+j/x)
—mr—4p a4 — s =0
D, =mx 5 o) py—my+2BOx p. =mz =
H_...l.z.z.zq_..
=pX+py+p.z— Em(x +y +z )+EBO( xy+yx)

1
2
Canonical form:

m()'c2 +y° +z‘2)

2

(p, +4B,y/2)’ +(Py ~qByx/2) 2
2m 2m 2m

H(x,y,z,p.,p,,P.) =



Kinetic energy of rigid body,

rotating at angular velocity @

dr r
— = +@®Xr
dt inertial body

=0 for rigid body

r=Xgmy = gm o))
=35 mfoxr, Joxr,)
=3y mle-ol, r)-(, o]
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P S

p
] -
=—0-1-o
2
Moment of 1nertia tensor:
I=>m, (lrp2 - rprp) (dyad notation)
p
Matrix notation :
(]xx [xy [xz |
I = [yx ])’y [yZ
]zx ]Zy ]ZZ Y,

\
_ 2
[ij =Zmp 5l'jrp rpirpj)
p
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Moment of 1nertia tensor:

I=>m, (lrp2 -~ rprp) (dyad notation)
P

Note: For a given object and a given coordinate system,

one can find the moment of inertia matrix
Z

Matrix notation :

(1. 1, 1.
iE ]yx ]yy ]yz

/I e
1 Ezp:mp 51']""192_”pi’"pj)

shutterstock.com = 497456917

X
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shutter ek com - 497456917

X X

Moment of inertia in

original coordinates

Moment of 1nertia in principal axes (x’y’,z’)

(I, 0 0
I=|0 I, O
0 0 I,
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Moment of 1nertia matrix

4
/[xx ]xy [xz |
I= ]yx ]yy ]yz
\]Zx Izy ]ZZ )

_ 2
1, _Zmp (é:j”p ”i’”pj)
P

. 2 .2 . 2 - .
[ =md’sin"« [, =-md cosasina =1,
[, =md’ (1+cosza
[_=2md’

10/17/2023
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2 . 2
I =md”| —sihacosa l+cos” &

L 0 0

(1+cosa 0 0)
0 l-cosa O
0 0 2,
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0
2

J
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