PHY 337/637 Analytical Mechanics
12:30-1:45 PM MWEF in Olin 103

Discussion of Lecture 4 — Chap. 6 in Cline

Calculus of variation applied to classical
mechanics

1. Hamilton’s principle and introduction to the
Lagrangian

2. Extension to multiple and generalized coordinates
3. D’Alembert’s principle

4. Velocity dependent forces
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Presenter Notes
Presentation Notes
In this lecture, we will continue to develop  notions of the calculations of variation and to start to show how they may be applied to classical mechanics.


Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook
section listing practice problems to be discussed at the course tutorials, and Assign is a link to the
graded homework for the lecture. The graded homeworks are due each Tuesday following the
associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading (Topic PP |Assign
1 [Tu, 8/29/2023 |Ch. 1 & 2 |Introduction, history, and motivation 2E [#1
2 |Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation 5E |#2
3 [Tu, 9/05/2023 |Ch. 5 More examples of the calculus of variation |SE [#3
» 4 |Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6FE [#4
5 |Tu, 9/12/2023
6 |Th, 9/14/2023
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Presenter Notes
Presentation Notes
There is one homework problem for this lecture.


PHY 711 -- Assignment #4

Assigned: 9/07/2023 Due: 9/12/2023

Continue reading Chapter 6, in Cline.

Consider a point particle of mass m moving (only) along the x axis according to a force
F,=-K x, where K 1s a positive constant. The particle trajectory as a function of time,
x(1), has the initial value x(7=0)=C, where C denotes a given length, and its 1nitial
velocity is 0.

a. Write down and solve Newton's second law for this system, finding the form of the
trajectory x(7).

b. Now write down the Lagrangian for this system and solve the Euler-Lagrange
equations for the trajectory x(7). How does your answer compare with (a)?
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Physics Colloquium Series

The originally scheduled colloquium for this week
has been rescheduled for December 7, 2023

In order to keep up the departmental good spirits, please join
Physics Reception in the Olin Lobby at 3:30 PM

W

WAKE FOREST

UNIVERSITY



.

Summary of equations from calculus of variation --

For this class of problems where we need to perform an extremization

on an integral form:

Xy
= jf[{y(x),@},xjdx 51 =0
4 dx
A necessary condition 1s the Euler-Lagrange equations:
61 _d of —0 = differential
oy ) dx 0(dy / dx) equation for

y(x)

or equivalently: %( - 8(a’i]; ) Zi j = (%)


Presenter Notes
Presentation Notes
Summary again.


Application to particle dynamics Corresponding chapter
in Cline textbook:

x—>t (time)

y —>¢q (generalized coordinate)

f — L (Lagrangian)

I —>AorS (action) 6: Lagrangian
J Dynamics
Denote: g = &9
dt

)
S = j L ({q, q’} ;t)dt where L = Kinetic energy-Potential energy
gt

Thanks to Hamilton’s principle
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Presenter Notes
Presentation Notes
We will now start to apply this mathematics to the physics of motion.    Here we map the variables that will apply.    A is called “action”.   L is called “Lagrangian”.


Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

S = jL q.q}:t)dt jL({yZ} jdt

Simple example. vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

: d’
Newton's formulation: m dtév =—mg
Resultant trajectory: y() =y, +vit—Lgt’

Lagrangian for this case:

1 (dy ’
L=—m|—=| —m
2 (dtj &


Presenter Notes
Presentation Notes
Here we will show how Newton’s laws can be written in terms of the Lagrangian formalism.


Now consider the Lagrangian defined to be :

y(f) — f
Kinetic Potential
energy energy

In our example:

o)==l ) e

Hamilton's principle states:

Ly
S = j L({ y(t),j—);},tjdt 1s minimized for physical y(7):

9/7/20213 PHY 337/637 Fall 2023-- Lecture 4 8


Presenter Notes
Presentation Notes
First we will show that it works with these relationships and then we will try understand why/how.


Condition for minimizing the action 1in example:

1 (ay)
S=\l—m| = | —m dt

Euler-Lagrange relations:

= —m —im'—O
g ——-my
S CD o W)=y +vt-Lgt’

dt dt
Perhaps looks familiar?
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Presenter Notes
Presentation Notes
Action is sometimes A and sometimes S.


Note that, showing that our construction is consistent with
Newton’s laws is not a proof. You will get the chance
to consider another example to check if that works (or

not) as well.

Digression on multiple coordinates due to multiple dimensions
and/or multiple particles.

1 particle+1 degree of freedom

Ssz(q,q',t)dt = Ssz({qa},{qa},t)dt

1 particle+3 Carthesian dimensions

for example: L({qa},{q'a},t) =L(x,y,z,x,y,2,t)
or  LXJ Vi siZ 4% 540514 551)

N particles+3 Carthesian dimensions
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Note that the notion of "generalized coordinates"
could be a single coordinate for a single particle

in one dimension, d coordinates for a single particle
in d dimensions, or dN coordinates for N particles
in d dimensions. Cartesian coordinates are also

"generalized coordinates".



Digression -- notion of generalized or curvilinear coordinates

Referenced to cartesian coordinates: r(¢) = x(¢)X+ y(2)y + z(¢)z

Cylindrical coordinates = pcf)sqb =x(p.9)
z y=psmg=y(p,9P)
=2
: p=yx’+y’
= _4< ¢ ¢ = arctan(y / x)
3 :. ﬁ 7z =Z
o -y
Y e Here we can write
o r(¢) =r(x(0), y(1),z(1)) = r(p(1), §(2), z(?))

x dr(t) =d p(1)p(1) + p()dp()9(t) + z(1)z
Figure B.2.4 Cylindrical coordinates

(Figure taken from 8.02 handout from MIT.)
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Presenter Notes
Presentation Notes
The derivation is based on the notion of “generalized” coordinates which can be Cartesian coordinates or one of the many transformed coordinates, or even more “general” coordinates.


x=rsinédcosg=x(r,0,9)

Spherical coordinates y=rsidsing=y(r,0,9)
z=rcosl=z(r,0,9)

r:\/x2+y2+z2

y . 2 2

y | g Jx+

\ 6 = arctan{ 4 J
z

g

/ & S ¢ = arctan(y / x)
; d Here we can write
' r(t) =r(x(?), y(1),z(2)) = r(r(1),0(1), (1))
* dr(t) = dr(t)t(t) + r(©)d0()0(¢) + r (1) sin 0()d $()P(¢)

Figure B.3.1 Spherical coordinates

(Figure taken from 8.02 handout from MIT.)
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Presenter Notes
Presentation Notes
Another example of transformed coordinates.


Jean d’Alembert 1717-1783
French mathematician and philosopher

“Deriving” Lagrangian
mechanics from Newton’s
laws.

The Lagrangian function is:

L({{ql. (1)} ,{%}},t} =T-U ¢q,(¢) are generalized coordinates

Hamilton's principle states:

S = jLL{{ql (t)} { }},t]dt 1s minimized for physical g,(¢):

L
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Presenter Notes
Presentation Notes
Previously we introduced the Lagrangian function without justification.    Here we follow a “derivation”  attributed to d’Alembert.


Generalized coordinates:

D’Alembert’s principle: %({ }) o x(q, )
% Note that
q_(t) can be x(2),0(?)....
Note that: ds = dxx+dyy + dzz Ox.
dx=dx.=> 0q
l @q o
Newton's laws : o ~1o
F-ma=0 (F—ma)- ds = O‘
F-ds = ZZF _5q This is D’Alembert’s principle.
For a conservative force: F, = _ou
Ox,
oU 8x oU
F-ds =— =—) —
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Presenter Notes
Presentation Notes
Here we start the derivation following D’Alembert’s arguments.     xi denotes the cartesian coordinate while q denotes the “generalized” coordinate.    In this slide we consider the potential energy terms.


You might ask why we need “generalized” coordinates. In fact,
Cartesian coordinates are often just fine, but using the more
flexible possibilities reveals important aspects of the formalism.
Cartesian coordinates are a special case of generalized
coordinates.

Comment on notation -- ds = dxX + dyy + dzz

la A la

For convenience let X =X,, y=X,, Z=X,

3
Then F-ds=) Fdsx,

i=1

But now we want to change coordinates g _ ({x}) < x,({q,})
P F -ds= dex— S
Xi_%: 45 to CZT:Z =1 | an 1o



Summary up to now --

K- ds = ZZF—&]G

For a conservative force: F, = _G_U
OX,
oU Gx
F-ds=- —_N' 5
ZZ ox, aq Z 9o
here, we use the 1dentity:
Z 8U 8xl. B 8U

I axi aqO' aq

o)



9/7/2023

p Generalized coordinates:
S

QG ({xl}) X <:> Xl
Newton's laws: =
F-ma=0 = (F-ma)-ds=0
z & X,
ma-ds = Zme —5q
. . d 8x
=22 g Mo | 9o
(dt ( ' 0q_ j dt 6q6
Claim: ox; _ 8).61. and d ox, 0 dx _ OX,
oq. 0q, dt 0q. 0q_ dt 0Oq_

. dS—ZZ[ t[ (: sz)}_@(ézxf)}%
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Presenter Notes
Presentation Notes
Continuing the derivations we consider the kinetic energy contributions.


Some details

. Ox, dx ox, d| . oOx . d Ox
Xi = = Xi — X

oq dt oq. dt\ Oq_ dt 0q_
You may be still wondering why we need to introduce
“generalized” coordinates when cartesian coordinates
are an example. What the generalized coordinates

allow us to show is that

ma-ds=z d 8.T_8T 0q.,
dt 0q. Oq

(o o

o)

where T = Z%mxf (kinetic energy)



Q\,- x, = x,({q,(0)}.)

Claim: 2% = %
0q, 04,
Details: x, = _ aiq'a *x, Therefore: 8).9. _ o
dt T 0q, ot oq, 0Oq,
Claim: d ox, 0 dx, _0x

dt 0q aq dt oq_

- & ¥

aqa 8qo_ 9o 8t8q anaqa 9o 8q08t
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Presenter Notes
Presentation Notes
Continuing the derivation.


s Generalized coordinates:
\/. 4. ({x.})
olmsi’)|_olsms)
ma-ds = Z Z 7 Py — A

Define - - kinetic energy: 7T = Z%mxf

ma-a’s:Z(d 8.T — T j&qa

Recall: aoq, og,
oU @x oU
F-ds=— _ v
> ZZ Ox, ﬁqa 1o Z ~0q_ 1o
oU d oI oT
F-ma)-ds=-5 225 _ 0
(F-ma)-ds==0 5 %%~ Z[dt 6, o, qu"
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Presenter Notes
Presentation Notes
Summary of results from D’Alembert’s analysis.


o)

. ds_ZZ[a’t[ (a% 2)}_@(%?2)}5%

Define - - kinetic energy: T = Z Lmx,”

ma-ds=z d 8?‘_8T oq
~\dt oq, Oq_

’ When do we need this term?

Single particle in 2 dimensions:

Cartesian coordinates: 7T = Em(x2 + )'/2)

: | . :
Polar coordinates: 7T = 5 m (r2 + rzﬁz)
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.

Generalized coordinates :

L

oU d 6T oT
F-ma)-ds=-5"L6g — - -
(F-ma)-ds g e Zal[dt oq, 8%)5%
_ _Z[d 8(T.—U)_8(T—U)j5%:0
>\ dt 0q._ oq._

Note: Thisisonly true if

L(qa,qa;l‘)ZT—U oU _,

9/7/2023

o4,
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Presenter Notes
Presentation Notes
Form of derived Lagrangian  provided that the potential does not depend on velocity.


s Generalized coordinates :
. e

Define -- Lagrangian: L=T-U

L=L({g,}.{4,}.)

d oL el
F-ma)-ds=— _ L s, -
(F-ma)-ds Z(dt o oq ] 1o

o o

ty

= Minimization integral: § = j L({qa},{q'g},t)dt

=>Hamilton’s principle from the “backwards”
application of the Euler-Lagrange equations --

Define -- Lagrangian: L=T7T-U

L=L1({g,}:{4,})
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Presenter Notes
Presentation Notes
Having shown that the Euler-Lagrangian equations are consistent with Newton’s equations of motion, we can then infer that the integral of the Lagrangian is optimized as is consistent with Hamilton’s principle.    


Euler — Lagrange equations: L=L({g_} {4 _}t)=T-U

d oL OL 0
dt 0q, 04,
Example:

L=1(0.0)=1md*60* —mg(d —d cos0)

d 3.L _OL —0 jimd29+mgdsin6’20
dt 0q_ 0q, dt
2
d f:—gsinﬁ
dt d

9/7/2023 PHY 337/637 Fall 2023-- Lecture 4 25


Presenter Notes
Presentation Notes
Example of using the Lagrangian formalism for a simple pendulum.


Anotherexample: L=L({g }{g, 5t)=T-U
d oL 0L
dt 0q, 0q,

L=La,B,y,a,p,7)=+1 (a2sin2ﬂ+,8'2)+%[3(dcos,8+7)2—Mgdcos,B

=0

;’Zt SL ;l;([asm B+1, (acos,B+7/)cos,B)
a

d oL d .\ OL

dt 0f3 dt( ﬂ)_%

d oL d : :

. a}}:dt(]3(acos,8+7/))20

9/7/2023 PHY 337/637 Fall 2023-- Lecture 4 26


Presenter Notes
Presentation Notes
Another example of Lagrangian formalism that we will encounter when we examine rigid body motion.


o Example — simple harmonic oscillator
T =Lmx’ U =1mw’x’
/W
Assume x(0)=0 and x(Z£)=0 S:%m.“()'cz—cozxz)dt

0

Trial functions x,(f) = Asin(t) S =0
X, (t) = Aot - (7 — o) S, =0.067 4’ me’
X, (1) = Ae”” sin (ot ) S, =0.062A4°mw’
2
1.5
X
1
0.5 X
0
0 0.2 04 0.6 0.8 1
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Presenter Notes
Presentation Notes
Harmonic oscillator example.     Here we again demonstrate the physical trajectory has the smallest “action”.


.
Summary —

Hamilton’s principle:
Given the Lagrangian function: L =1L ({% } : {q’a },t) =T-U,
The physical trajectories of the generalized coordinates {qa (t)}
are those which minimize the action: § = _[L({qa b{q,}.t)dr
Euler-Lagrange equations:

d OL OL d oL OL
Z —— q.=0 —=foreacho: — — -0
>\ dt 8q0' aq dt @qa @q

d c



Presenter Notes
Presentation Notes
Recipe for Lagrangian mechanics.


.

Note: in “proof” of Hamilton'’s principle:

d OL OL
— =( fi L =1L . _T_U
[ dt aqg an j or ({QG }9 {qg }, t)
It was necessary to assume that :
dau

— does not contribute to the result.
dt 0q_

— How can we represent velocity -dependent forces?

Why do we need velocity dependent forces?

a. Friction is sometimes represented as a velocity
dependent force. (difficult to treat with Lagrangian
mechanics.)

b. Lorentz force on a moving charged particle in the
presence of a magnetic field.


Presenter Notes
Presentation Notes
Important restriction.


.

| orentz forces: , , ,
For particle of charge ¢ in an electric field E(r,7) and magnetic field B(r,z):

Lorentz force: F=g¢q (E + Vv X B) (in SI units)
x —component : F. = q(Ex +(vx B)x)
In this case, 1t 1S convenient to use cartesian coordinates

L=L(xyz%.4,t)=T-U Note: Here we are using

T=1m(&+3°+2°) cartesian coordinates for
(Cl’ oL 8Lj convenience.
x-component: - — =
dt Ox Ox
oU d oU

Apparently: F =-— +

PP ™7 T ox
Answer: U=q®(r,t)—gri-A(r,¢)

OA (r,t)
Ot

where E(r,7)=-V®(r,¢) B(r,t)=VxA(r,t)


Presenter Notes
Presentation Notes
While Lagrangian mechanics cannot treat all velocity dependent forces,    it is possible to extend the analysis for the case of  the Lorentz force.     This material is treated in Chapter 6.10 of your textbook.


More details --

Consider: 0= —Z(jt 8(2 _ 9 _ 8(7(; ) j5q0
95 q

o o

1
Suppose T = Em(ic2 + 37 +2%)

(d o(T -U) 8(T—U)j d . d (an oU
= 0= — =—mx — +—
dt Ox Ox dt dt\ Ox Ox

= F - d(&Uj_@U

ox ) ox



Units for electromagnetic fields and forces

cgs Gaussian units -- (used in older textbooks)

E and B fields as related to vector and scalar potentials:
1 0A(r,1)

c Ot
Corresponding Lagrangian potential:

E(r,t)=-VO(r,t)-

B(r,t)=VxA(r,¢)

i A(r,1)

U=q®(r,t)-=
c

Sl units --

E and B fields as related to vector and scalar potentials:
OA (r,1)
ot
Corresponding Lagrangian potential:
U=q®(r,t)—qr-A(r,z)
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.

Lorentz forces, continued:

x —component of Lorentz force: F_=gq (Ex + (V X B)x )

Suppose: U =q®(r,t)—gr-A(r,?)

Consider: F. :_aUJr d oU
Ox dt Ox
A
w__, a®(r’t)+q(x8A’“(r’t)+ya () o (r,t))
Ox Ox . -
Y gt (1)

OX

+ +
o oy 0 oz

d dU dA, (r,t) (an(r,t),+an(r,t), 04, (r,t) . 04, (r,t)
= —q

9/7/2023 PHY 337/637 Fall 2023-- Lecture 4

33


Presenter Notes
Presentation Notes
Very clever mathematicians figured out how to incorporate Lorentz  into the Lagrangian formalism.    Here we are assuming their result and showing that it is consistent.


.

Lorentz forces, continued:

oU oD (r,1) +q( 04, (r,t) 04, (r,t) . 0A (r,t))

—— = — —
ox 1 Ox > ox Y ox : Ox
OA_(r,t OA_(r,t OA_(r,t OA_(r,t
dau__ (oa(n) oA (re) | oA (), oA, ()
dt oOx Ox oy 0z ot
oU d oU
ox dt ox
oD (r,t [ 04 (r,t) OA_(r,t [ OA (r,t) OA_ (r,t OA. (r,t
200, o hle) (e, (o40) 24 (e 24
Ox Ox oy ox oy ot
oD(r,t) A (r,t) (04, (r,t) 04 (r,t (04.(r,t) 04 (r,t)
) (0), o U e) S4(00), o 4000 24
Ox ot Ox oy ox oz

= gE.(r.t) +q(3B. (r.1) =B, (r.1)) = gE, (r.1) +q (v B(r.1)).
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Presenter Notes
Presentation Notes
More derivations.



.

Some details on last step:

F:_8U+d8U
’ Ox dt Ox
oD (r,t [ 0A (r,t) OA_(r,t [ OA_(r,t) OA. (r,t 0A_(r,t
), (400 (), (04 (00) (e (e
X Ox oy Ox oy ot
oD(r,t 0A_(r,¢ [ 0A (r,t) OA_(r,t | 0A_(r,t) OA. (r,t
) Bled) o h(e0) (e, (04 (e0) 34 (e0)
ox ot Ox oy Ox 0z
A
Note that: E(r,t):—VCI)(r,z‘)—a (r.1)

Py B(r,r)=VxA(r,r¢)

So that:

F (r,t) =qE (r,t)+ q(j/BZ (r,t)-zB, (r,t)) =qE_ (r,t)+ q(va(r,t))

X
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Presenter Notes
Presentation Notes
More derivations.



S
Lorentz forces, continued:

Summary of results (using cartesian coordinates)
L=L(x,y,z,%,3,zt)=T-U

T=im(+37+2)  U=q®(r,t)—qr-A(r,t)
OA (r,t)

where E(r,t):—VCD(r,t)— Py

B(r,t)=VxA(r,z)

L :%m()'c2 + 37 +Z'2)—qCD(r,t)—|—ql"-A(r,t)


Presenter Notes
Presentation Notes
Summary of results.


Example Lorentz force
L :%m()'cz + 37+ 2 ) qD(r,t)+qi-A(r,1)
Suppose E(r,1)=0, B(r,t)= B,z
A(r,t)=1B (- y& + x3)

2

L=1m(5*+y*+2*)+L B (=iy+ jx)

2
ia—L_—a—L:O :d(mx—gBoyj qBOy 0
dt ox Ox dt 2 2
daL_oL_ :,d(myﬂng 4B 50
dt oy Oy dt 2 2
dob o _ =0 jimZ':O

dt 0z Oz dt


Presenter Notes
Presentation Notes
Example for a  magnetic field in the z direction.


Example Lorentz force -- continued

L:%m(fcz+j/2+22)—|—%B0(—5cy—|—j/x)

D i—9py1-9p 50 — m¥—gB,y =0
dt 2 ) 27" ’
o+ 2p 5 |+9B 520 — mj+qB i =0
dt 2 ) 2" ’
imz’zO = mz =10


Presenter Notes
Presentation Notes
Finding the Euler-Lagrange equations.


®
Example Lorentz force -- continued

L=1m(i*+y* +2* )+ LB (—sy+ yx)

2
mx =+qB,y
my = —qB,x
mz =0

Note that same equations are obtained
from direct application of Newton's laws:

mr = qr x Bz


Presenter Notes
Presentation Notes
Summary from previous slides.


®
Example Lorentz force -- continued

Evaluation of equations:

mi—qB,y =0 )’C(Z)zVOSin(%H—@
my +qByx =0 y'(t):VOcos(%t+¢)
mz =0

z(t)=V,,


Presenter Notes
Presentation Notes
We get the same motion for this case.


®
Example Lorentz force -- continued

Consider formulation with different Gauge: A (r)=-B,yx
L=1m(&+3" +2")—qBiy
%(mic—qBoy)zo = mx—qB,y =0
d B . . . .
—(my)+qB,% =0 = my+qBx =0
imz’ =0 —>mz =0
dt

Does it surprise you that the same equations of motion are
obtained with a different Gauge?


Presenter Notes
Presentation Notes
This is the same magnetic field, but an equivalent vector potential.


How do these two different forms of A correspond to the
same B?

B(r,t)=VxA(r,t¢)
Consider A'(r,t) =A(r,t)+V/f(r,¢)
Note that VxA(r,t)=VxA'(r,¢)

1 A
In our case, A(r, t)=§BO (—yX+xy)

A'(r,t)=—B,yx
What is f (r,?)?
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