PHY 337/637 Analytical Mechanics
12:30-1:45 PM MWEF in Olin 103

Discussion of Lecture 5 — Chap. 7 & 8 in Cline

Lagrangian and Hamiltonian analysis

1. Review of Lagrangian mechanics

2. Legendre transformations and construction of the
Hamiltonian

3. Canonical equations of motion
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Presenter Notes
Presentation Notes
In this lecture, we will continue to develop  notions of the calculations of variation and to start to show how they may be applied to classical mechanics.
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9/12/2023

PHysics

CoLLoQuiuM

Fantastic Frameworks From Physics

Dr. Salman Azhar is a co-founder or a co-investor in
over 125 startups. He has scaled organizations by
forming teams and solving enigmatic problems. Dr.
Azhar has 35 years of experience in industry and
academia, during which he has crafted and led talented
teams in developing and launching innovative technical
solutions with a wide range of applications. Dr. Azhar is
a Faculty member and Executive in Residence at Duke
University's Fugua School of Business. He is a Charter
Life Member of OPEN Global and a venture partner at
SAP.io and the University of Minnesota. Dr. Azhar is an
advisor to several companies, including Regiment
Securities. His former business partners and clients
include Toyota, Sony, SAP, and others. He is currently
developing innovative technology initiatives and
mentoring leaders. Dr. Azhar earned his MS and PhD
in Computer Science from Duke as a James B. Duke
Fellow and a BS in Math and Physics from Wake
Forest University as a Carswell Scholar. In Thursday's
talk, Dr. Salman plans to go over how he develops
frameworks from physics to lead a more fulfilling life by
making better decisions and solving real-world
problems. He will share his thinking process and invite

THURSDAY

SEPTEMBER 14TH, 2023

Salman Azhar, PhD

WFU Alum, Faculty Member and
Executive in Residence
Fugua School of Business

Duke University

4 pm - Olin 101
Refreshments will be served in Olin
Lobby beginning at 3:30pm.
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Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook
section listing practice problems to be discussed at the course tutorials, and Assign is a link to
the graded homework for the lecture. The graded homeworks are due each Tuesday following
the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading Topic PP Assign

1 [Tu, 8/29/2023 |Ch. 1 & 2 |Introduction, history, and motivation 2E #1

2 [Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation SE #2

3 [Tu, 9/05/2023 |Ch.5 More examples of the calculus of variation |5E #3

4 [Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E [#4
» o [Tu, 9/12/2023 |Ch. 7 & 8 Hamiltonian mechanics 8E [#5

6 (Th, 9/14/2023

7 Tu, 9/19/2023

8 (Th, 9/21/2023

|—l— P T o W W A |
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Presenter Notes
Presentation Notes
There is one homework problem for this lecture.


PHY 337/637 — Assignment # 5

Assigned: 09/12/2023  Due: 09/19/2023

This exercise uses the Lagangian and Hamiltonian formalisms.

1. Suppose that the motion of a point particle of mass m can be described in cartesian coordinates
by the Lagrangian

1
Lz, v, 2,29, 2,8 = 5 (:f:z + 9 + 22) + Cxz,

where C'is a positive constant having the units of mass/time. At ¢ = 0, the initial coordinates
of the particle are z(0) = y(0) = 2(0) = 0 and the initial velocities are #(0) = ¢(0) = 0 and
2(0) = V4.

(a) Write the Euler-Lagrange equations for this system and solve them to find the trajectories
of the particle z(t), y(t), z(t).

(b) Evaluate the Hamiltonian for this system using the Legendre transformation and put it
into Canonical form.

(c) Evaluate and solve the Canonical equations of motion for this system and compare your
answer with part (a).

9/12/2023 PHY 337/637 Fall 2023-- Lecture 5 5



7: Symmetries,
Invariance and the
Hamiltonian

9/12/2023 PHY 337/637 Fall 2023

8: Hamiltonian
Mechanics

o

Main focus of today’s
lecture

-- Lecture 5



Review of Lagrangian mechanics --
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Particle dynamics using the Lagrangian formalism, thanks to
Hamilton’s principle —

Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral
2

S jL(q,q,t)dt for a system with a

single generalized
g coordinate q(t)

S IL({qa},{qa},t)dt for a system with multiple

dimensions and/or
b particles with generalized
coordinates q (f)

Kinetic energy Potential energy
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Presenter Notes
Presentation Notes
Here we will show how Newton’s laws can be written in terms of the Lagrangian formalism.


Digression: Is the Lagrangian function unique?

a. Yes
b. No

Consider

L,({,}:4d,}-t) and Ly({a,}.{d,}.7)

where L, ({qa} {g,}, )=L ({qg} (g}, ) df({j;}»f)
S = IL {g,}.4,}.t a’t IL CRARUAN )dﬁiidf({z;}»f)dt

- thA ({qa},{éa}al‘)d““f({qa}’t)‘:



Unigueness of the Lagrangian — continued --

=> 1t is possible to find two different
Lagrangians for the same system that =0
both satisfy Hamilton’s according to:

Ly ({g.}4d. 1) = L, (g, G, bor)+ df({j;},r)




|dea of Legendre transformations

Adrien-Marie Legendre

1752-1833 Paris, France
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Mathematical transformations for continuous functions of
several variables & Legendre transforms --

z(x,y) = dzz(%j dx+(azj dy
ox ), oy ).

Let u= (@j and v= oz = dz =udz+vdy
y ay X

dw=dz — udx xdu = }4 +vdy — 74 xdu
(awj (ﬁwj (az]
—  — = —X S = || — =YV
ou ), oy ), \ay ).
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Presenter Notes
Presentation Notes
Relationships between the old and new variables.


Now that we see that these transformations are
possible, we should ask the question why we
might want to do this?

An example comes from thermodynamics where
we have various interdependent variables such
as temperature T, pressure P, volume V, etc.
etc. Often a measurable property can be
specified as a function of two of those, while the
other variables are also dependent on those two.
For example we might specify T and P while the
volume will be V(T,P).  Or we might specify T
and V while the pressure will be P(T,V).



Other examples from thermo --
For thermodynamic functions:

Internalenergy: U =U(S,V)
dU =TdS — PdV

dU:(a—Uj d5+(a_‘fj av
oS ), oV ),

oS ), ov ).

Enthalpy: H=H(S,P)=U+PV

a’H=dU+PdV+VdP:TdS+VdP=(2—I;[j dS+(a—Hj dP
P S

oP
oS ), oP ).


Presenter Notes
Presentation Notes
Examples from thermodynamic functions


Name Potential Differential Form
Internal energy E(S,V,N) dE =TdS — PdV + pdN
ST _ 1 Py By
Entropy S(E,V,N) dS = TdE + ?dlf — Tdf\
Enthalpy H(S,PN)=FE+ PV | dH =TdS + VdP + pdN
Helmholtz free energy | F(T,V,N)=E —TS | dF = —SdT — PdV + pdN
Gibbs free energy G(T,P,N)=F+ PV | dG=—-SdT +VdP + pudN
Landau potential AT, V,u)=F —uN | dQ = —-SdT — PdV — Ndu

9/12/2023
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Presenter Notes
Presentation Notes
Common thermodynamic energy functiosn.


Lagrangian picture
For independent generalized coordinates g_(%):

L=L({g,O}{g, @)}t
d oL 0L
dt 64, 0q.

= Second order differential equations for g_(¢)

=0

Switching variables — Legendre transformation

Define:  H =H(ig, ()} {p,()}1)

L
H:Z%PJ_L wherepgzéf?

. . oL oL ,. | oL
dH = Z(qadpg + p.dq, —ﬁdqa _ﬁd%j_adt


Presenter Notes
Presentation Notes
Applying the ideas of variable change to the Lagrangian formulation.


Hamiltonian picture — continued

H=H({g,O}L{p, 0O}1)

H:Zc}(jpa—L where pJ:a—_L
> oq.,
oL oL oL
dH=Sadvo +p di ——dg - dq |-Lar
;(qg Pot Podiy = ~ddn = qaj >
— (a—qua—l—@—HdpG]+8—Hdt
~\0q,_ P, ot
_ ., _oH oL d oL . 8H oL _ OH
T o, oq. di 0. 17 oaq. a  a
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Presenter Notes
Presentation Notes
Transforming from the Lagrangian to Hamiltonian formulation of mechanics.      We will continue this discussion on Friday.


La%rar]gian picture . .
or independent generalized coordinates g _(¢):

L=L({g,®}.{d, }.1)
d oL oL
dt 0q, 0Oq

= Second order differential equations for g_(¢)

=0

o)

Switching variables — Legendre transformation

Define:  H =H(ig, ()} {p,()}1)

L
H:Z%PJ_L wherepgzéf?

. . oL oL ,. | oL
dH = Z(qadpg + p.dq, —ﬁdqa _ﬁd%j_adt


Presenter Notes
Presentation Notes
Starting with the Lagrangian and then performing a Legendre transformation.


Application of the Legendre transformation for the Lagrangian and Hamiltonian

L(q,q,t) and H(q, p,?)
oH oH OoH
dH = gdp + pdg dg + dp +| — |dt
AL - at (aqjq Eap]p (atj

suppose  H(q, p,t) = c}p—L(q c],t)
oL

Note that these two terms cancel if p = @_
q

= dH = qgdp — oL dqg — (aLjdt— oH dg+| — oH dp+[a—det
8q ot Gq op ot

Generalization to multiple dimensions g_and p_ is
straightforward ...



Hamiltonian picture — continued
H=H ({q,0}{p,0}.1)

szqapa—L where p_ =

O aqo'
oL oL oL
dH =\ g.dp, + p.d, —~=dq, - My |- ar

95
oL oL
S gdp —Lag |-La

o

aL

dH = 6—qua+a—HdpG +8—Hdt
~\ 0q_ op,, ot
: oH oL, d oL . oH oL oH
— QO' -~ — = po- - = — =
op., Oq. dt 0q,
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Presenter Notes
Presentation Notes
Finding the Hamiltonian equations of motion.


Direct application of Hamiltonian’s principle using the
Hamiltonian function --

s Generalized coordinates :
L, el

Define -- Lagrangian: L =T -U

L=L({g,}.{4.}.1)
— Minimization integral: S = J{L({qa},{q'g},t)dt

Expressed in terms of Hamiltonian:
H = H({q,(0}.{p,(0)}.)
H=Y%4q,p,~L = L= 4,p,~ H({q,0}.{p,(0)}.1)
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Presenter Notes
Presentation Notes
Showing that Hamilton’s principle can be formulated with the Hamiltonian formulation.


Hamilton’s principle continued:
Minimization integral:

S = H;(LPG - H({q,0}.{p,(0)}.1) jdt

f | | OH OH
agz j(Z(qﬁgpo' +5q6p0' _—5qa __é‘po-j)dt :O

> aq,, P,
.  OH
=4, =< . i
op,, Canonical equations
— 7 —_a_H
Ps oq,
Detail : 0

[ DXCER)Y

t L\ O

[PXCRRI LR R
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Presenter Notes
Presentation Notes
So called “Canonical” equations.


More comments about “details”

Detail :

I(;(&]apa)jdt H;( (op.) g paj}z’t =§5qapati
—

Vanishes because
6q(ty=oq(t) due to
the premise of
Hamilton’s principle.
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In the Hamiltonian formulation --

= q :ai
" ap,

= p :_8_[{
" Oq,

Why are these equations known as the “canonical equations™?
a. Because they are beautiful.
b. The term is meant to elevate their importance to the level
of the music of J. S. Bach
To help you remember them
No good reason; it is just a name

o o



Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L= L({g_(H)},{g.(6)},7)

: L
2. Compute generalized momenta: p_ = 8_

04,
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H ({% (t)}, { p. (1) }, t)
5. Analyze canonical equations of motion :
dq. OH dp,  OH

O

dt ~ op, dt ~ oq.



Presenter Notes
Presentation Notes
Important recipe.    Tape this to your wall!!!


What happens when you miss a step in the recipe?
a. No big deal

b. Big deal — can lead to shame and humiliation
(or at least wrong analysis)

Lagrangian picture

For independent generalized coordinates ¢g_(¢):
L=L({g,0}.{4,(®)}.1)

d oL OL
dt 0q, Oq

=0 = Second order differential equations for q_(¢)

(o}

Hamiltonian picture

For independent generalized coordinates ¢q_(#) and momenta p_(?):

H =H ({g,(®}.{p,®)}.1)
dq, OH dp,  OH
dt  op, dt g

= Two first order differential equations



Constants of the motion in Hamiltonian formalism

H = H ({q,0}.{p, 0} 1)

94, _ OH —> constant ¢_ 1f oH 0
dt Op, op,,

ap, _ _OH —> constant p_ 1f A _ 0
dt oq,, oq,,

dH oH . OH . OH
- = _qo_ _|_ _po_ _|_ -

dt T\ oq, op,, Ot

dH (=P, +3 .)+8H_6H

dt < Pods T 4oPs ot Ot

—> constant H 1if ot _ 0

ot


Presenter Notes
Presentation Notes
Finding constants of the motion within the Hamiltonian formalism.


What is the physical meaning of a constant H?

Comment -- Whenever you find a constant of the
motion, it is helpful for analyzing the trajectory. In this
case, H often represents the mechanical energy of the
system so that constant H implies that energy is
conserved.



Example 1: one-dimensional potential:

L :%m(icz + 37 +Z'2)—V(z)

p,=mx p,=my p =mz

H =mi’ +mj’ +mz’ —(im(¥* +3" + 2 )=V (2))
2 2

2
Hsz+py+pZ+V(z)
2m  2m  2m

Constants:  p_,p y,ﬁ (using bar to indicate constant)
dz OH p. dp. A4V
dt 0Op, m dt dz

Equations of motion:
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Presenter Notes
Presentation Notes
Example.


Example 2: Motion in a central potential
L= %m(fz + r2¢2)— V(r)
p, =mr p,= mr’Q

H =mi* +mr’g’ —(%m(fz + rngz)—V(r))

= %m(f2+r2gb2)—l—V(r)
2 2
H=2 p¢2 +V(r)
2m  2mr

Constants: p ,H

Equations of motion:

dr p, dpr__ﬁH_ﬁ; oV

dt m dt or mr> or

9/12/2023 PHY 337/637 Fall 2023-- Lecture 5
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Presenter Notes
Presentation Notes
Another example


)
Other examples

Lagrangian for symmetric top with Euler angles «, 3, 7 :

L=L(a.B.y.a B.7) =11 (&’ sin’ B+ )+ 1, (crcos B+7)
— Mghcos 3

p,=1lasin’ f+1,(ccos B+y)cosf

p;=1p

p, =1, (ccos f+7y)

H=1] (0’52 sin’ ,B+,B'2)+%13 (a cos,B+7?)2 + Mghcos

2
— COS
(P pfzﬂ)+pﬂ+
21 sin” 21, 21,

T

Constants:  p,,p,,


Presenter Notes
Presentation Notes
Another example


.

Other examples

L:%m(icz+)>2+Z'2)+ZiCBO(—)'cy+j/x)
q
D. —mx—z—CBoy
q
= — B x
P, my + e
P. =
H = % (x2+j/2+z'2) Canonical form
2 2
q _9 ‘
Pt By Py = Bo¥ )
H = + + L
2m 2m 2m

Constants:  p.,H
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Presenter Notes
Presentation Notes
Example with magnetic field.


Canonical equations of motion for constant magnetic field:

2m 2m 2m
Constants: p.,H

4q _ 49
dx B P, T 2 B,y dy B P, ¢ Bx
dt m dt m



Presenter Notes
Presentation Notes
Working out the equations of motion.


Canonical equations of motion for constant magnetic field
-- continued:

dx_px+2—CBoy dy_py_2—cBOx
dt m dt m
d B B, d
P. _ 4 O(py_iBoxJ:q 0o 4V
dt 2mc 2c 2c dt
d
Py _ qb, (px+iBoy):—qB0 dx
dt 2mc 2c 2c dt
2 .
d;c:px+ 4_p 9B
dt m 2mc mc dt
dy _Py g p._ 4B, dx
0


Presenter Notes
Presentation Notes
More evaluation of the equations of motion.


d°x qB, dy
dt> mc dt
d’y __qBO dx

dt’ mc dt

Are these results equivalent to the results of the
Lagrangian analysis?

a. Yes

b. No



General treatment of particle of mass m and charge ¢ moving

in 3 dimensions 1n an potential U (r) as well as electromagnetic

scalar and vector potentials @ (r,7) and A(r,¢):

Lagrangian: L(r,t,t)z%mi‘z U (r) - q®(r.0)+ L A(r,0)
c
Hamiltonian:  p= 8_L = mr + gA(r,t)
or C


Presenter Notes
Presentation Notes
Recap of treatment of electromagnetic interactions in the Lagrangian and Hamiltonian formulations.


.

Some details: L(r,F, t)——mr ~-U(r )—qCD(r,t)Jrgl"-A(r,t)
c

Hamiltonian:  p= Z—]; = mr + Z A(r,t)
H(r,p,t)=p-f—L(r,r,1)

=(mi‘+1A(r,t)j.i-—(%mi‘2 —U(r)—qCD(r,t)+11"-A(r,t)j

C C

%m# LU (1) + ¢ (r,0)

H(r,p,t)=ﬁ(p —%A(r,t)jz FU(r)+ 40 (r1)

~ Canonical form
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Presenter Notes
Presentation Notes
Continued.
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