PHY 337/637 Analytical Mechanics
12:30-1:45 PM MWEF in Olin 103

Discussion of Lecture 6 — Chap. 7 & 8 in Cline

Lagrangian and Hamiltonian analysis --
continued

1. Review of Lagrangian and Hamiltonian formalisms
2. Examples

3. Brief comments about phase space
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9/14/2023

PHysics

CoLLoQuiuM

Fantastic Frameworks From Physics

Dr. Salman Azhar is a co-founder or a co-investor in
over 125 startups. He has scaled organizations by
forming teams and solving enigmatic problems. Dr.
Azhar has 35 years of experience in industry and
academia, during which he has crafted and led talented
teams in developing and launching innovative technical
solutions with a wide range of applications. Dr. Azhar is
a Faculty member and Executive in Residence at Duke
University's Fugua School of Business. He is a Charter
Life Member of OPEN Global and a venture partner at
SAP.io and the University of Minnesota. Dr. Azhar is an
advisor to several companies, including Regiment
Securities. His former business partners and clients
include Toyota, Sony, SAP, and others. He is currently
developing innovative technology initiatives and
mentoring leaders. Dr. Azhar earned his MS and PhD
in Computer Science from Duke as a James B. Duke
Fellow and a BS in Math and Physics from Wake
Forest University as a Carswell Scholar. In Thursday's
talk, Dr. Salman plans to go over how he develops
frameworks from physics to lead a more fulfilling life by
making better decisions and solving real-world
problems. He will share his thinking process and invite

THURSDAY

SEPTEMBER 14TH, 2023

Salman Azhar, PhD

WFU Alum, Faculty Member and
Executive in Residence
Fugua School of Business

Duke University

4 pm - Olin 101
Refreshments will be served in Olin
Lobby beginning at 3:30pm.
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PHY 337/637 Analytical Mechanics

TR 12:30 -1:45 PM [ OPL 103 |http://www.wfu.edu/~natalie/f23phy337/ ‘

|Instruct0r: Natalie Holzwarth |Office:300 OPL

e-mail:natalie@wfu.edu ‘

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook section listing
practice problems to be discussed at the course tutorials, and Assign is a link to the graded homework for the

Course schedule

lecture. The graded homeworks are due each Tuesday following the associated lecture.
(Preliminary schedule -- subject to frequent adjustment.)

Date Reading [Topic PP |Assign
Tu, 8/29/2023 |Ch. 1 & 2 [Introduction, history, and motivation 2E |#1

Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation 5E |#2

Tu, 9/05/2023 |Ch. 5 More examples of the calculus of variation |SE [#3

Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E |#4

Tu, 9/12/2023 |Ch. 7 & 8 |Hamiltonian mechanics 8E [#5

Th, 9/14/2023 |Ch. 7 & 8 Hamiltonian mechanics 8E

Tu, 9/19/2023

Th, 9/21/2023

Tu, 9/26/2023

Th, 9/28/2023

=]
I sl ol el el N

9/14/2023
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Presenter Notes
Presentation Notes
There is one homework problem for this lecture.


Review of Lagrangian and Hamiltonian formalisms
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Particle dynamics using the Lagrangian formalism, thanks to
Hamilton’s principle —

Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral
2

S jL(q,q,t)dt for a system with a

single generalized
g coordinate q(t)

S IL({qa},{qa},t)dt for a system with multiple

dimensions and/or
b particles with generalized
coordinates q (f)

Kinetic energy Potential energy
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Presenter Notes
Presentation Notes
Here we will show how Newton’s laws can be written in terms of the Lagrangian formalism.


Lagrangian picture
For independent generalized coordinates ¢g_(7):
L=L({q,0}.{q,®}.1)

d oL oL

dt 0q_ 0Oq

Lagrangian equations of motion: =0

(o}

. L .
Alternate form of Euler-Lagrange equations: i[L - a_%j =

dt\~ “oq

Switching variables — Legendre transformation

Define: H = H({qa (t)} ,{pa (t)} ,t)

H = an p.—L where p_ = @_L Note that:
z %o dH  oH

oH : oH
—  P,=—— dt ot

Canonical equations: g_ =
aZ?O' aqo'

a_L
ot


Presenter Notes
Presentation Notes
Starting with the Lagrangian and then performing a Legendre transformation.


In the Hamiltonian formulation --

= q :ai
" ap,

= p :_8_[{
" Oq,

Why are these equations known as the “canonical equations™?
a. Because they are beautiful.
b. The term is meant to elevate their importance to the level
of the music of J. S. Bach
To help you remember them
No good reason; it is just a name

o o



Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L= L({g_(H)},{g.(6)},7)

: L
2. Compute generalized momenta: p_ = 8_

04,
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H ({% (t)}, { p. (1) }, t)
5. Analyze canonical equations of motion :
dq. OH dp,  OH

O

dt ~ op, dt ~ oq.



Presenter Notes
Presentation Notes
Important recipe.    Tape this to your wall!!!


Constants of the motion in Hamiltonian formalism

H =H({q,}.{p, 1)}.1)

dq oH _ ..O0H
= = — constant g_=¢q_ 1if — =0
dt Op, P,
d
P, O —> constant p_ = p_ ifﬁi =0
dt oq._ oq,
dH OH . OH . oH
— _qo_ _|__po_ _|__
dt T\ o0q, op., Ot
d_H—Z(_' 1 +qg 71 )_|_a_H—a_H
dt = FPalle 790 Po ot Ot
— constant H = H if o =0

Ot


Presenter Notes
Presentation Notes
Finding constants of the motion within the Hamiltonian formalism.


Example: one-dimensional potential:

L= %m(x2 + 3y’ +z‘2)—V(z)

p,=mx p,=my p =mz

H =mx* +mj’ +mz —(gm(x2 + 37+ 22)—V(z))

2 2

2
Hsz+py+pZ+V(z)
2m  2m  2m

Constants:  p_,p, ,H (using bar to indicate constant)

dz OH p, dpz__ dV

dt op. m  dt  dz

Equations of motion:


Presenter Notes
Presentation Notes
Example.


.

Example: Motion in a central potential
L= %m(fz + rngz)— V(r)
p. =mr P, = mr’g

H =mi* +mr’¢’ —(%m(fz +r2gb2)—V(r))

= %m(fz + rng2)+ V(r)
2 p2
H=Lfr, Lv — +V(r)
2m  2mr Note that:
Constants:  p_,H p, — { (angular momentum)

Equations of motion:

dp, ©OH P, oV

ar _p,
dt m dt or mr-  or



Presenter Notes
Presentation Notes
Another example


Example of motion in a central potential

—0.1- 2mr2 X H

_osl V(1) _ 2 2
- H = P + ¢ = +V(r)
2m  2mr
2 2
H:ﬁtﬂj v L V()
2\ dt 2mr
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General treatment of particle of mass m and charge ¢ moving

in 3 dimensions 1n an potential U (r) as well as electromagnetic

scalar and vector potentials @ (r,7) and A(r,¢):

Lagrangian: L(r,t,t)z%mi‘z U (r) - q®(r.0)+ L A(r,0)
c
Hamiltonian:  p= 8_L = mr + gA(r,t)
or C


Presenter Notes
Presentation Notes
Recap of treatment of electromagnetic interactions in the Lagrangian and Hamiltonian formulations.


.

Some details: L(r,F, t)——mr ~-U(r )—qCD(r,t)Jrgl"-A(r,t)
c

Hamiltonian:  p= Z—]; = mr + Z A(r,t)
H(r,p,t)=p-f—L(r,r,1)

=(mi‘+1A(r,t)j.i-—(%mi‘2 —U(r)—qCD(r,t)+11"-A(r,t)j

C C

%m# LU (1) + ¢ (r,0)

H(r,p,t)=ﬁ(p —%A(r,t)jz FU(r)+ 40 (r1)

~ Canonical form
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Presenter Notes
Presentation Notes
Continued.


Some more examples of using Lagrangian and/or
Hamiltonian formalism for analyzing motion --

9/14/2023 PHY 337/637 Fall 2023-- Lecture 6
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Example — linear molecule

—> X

1, 1 L, 1 .
L= 5’"13‘12 +5m2x22 +§m3x32

1
_Ek(xz —X _612)2 -

Lk
2

9/14/2023 PHY 337/637 Fall 2023-- Lecture 6
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Let: x, =>x—x, x,>x,—x, =4, x3—>x,—-x, —L,—V(,,
1, 1 L, 1 ., 1 1

L = 5m1x12 —|—5m2x22 —|—5m3x§ —Ek(xz —xl)z _Ek(x3 _x2)2
Coupled equations of motion :
mx, = k(x2 _xl)
MyX, = —k(x2 —xl)+k(x3 _xz): k(xl —2x, "‘xs)
myXy = —k(x3 —x2)
Let x.(t) = X7

* =y —xr)
sz“ - k(Xf‘ —2XE + XY
lm XY = k(X7 - X7

QNQNQN



Coupled linear equations:

—@’m X" =k(X¢ - Xx7)

—@?m, XS =k(Xe-2X7 + X7

- 2m X¢ = k(X5 - X7)

Matrix form:

(k-o’m, -k 0
~k  2k-o’m, -k

\

(X
X

0 —k k—a)jmw

73



Matrix form:

(k-w’m -k 0 \[x*
—k 2k —a’m, —k X7 =0
.0 —k k—a)imU\Xf/

More convenient form:

Let ¥, =\m X,  Equations for Y take the form:
/Kll - wj{ K 0 ) /Yla\
K 2Ky, — a)ozt Ky v |=0
2 o
\ 0 Ky K33 =W, ) \Y3 )
k




Rearranging the equation to an eigenvalue problem:
( K —Kp 0 ) /Yla\ /Yla\

a | 2 o
—Ki, 2K22 —Ky; Yz =, Yz

\ 0 Ky Ki; )\Y3a/ \Ysa/

Special case for CO, molecule --m, =m, =m, and m, =m,_

( Koo —Koc 0 ) /Yla\ /Ya\

]
a | 2 a
—Koc 2KCC —Koc Yz =, Yz

\ 0 —Koc Koo /\Y3a) \Y3a)



For m,=m, =m,

and m, =m,

k k
Q. ..0 @ -
Q. 0 .Q -
W, = |—
mg
W, = +
m, mg;
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Presenter Notes
Presentation Notes
Reviewing results for example isolated molecule.


. . (with help from Maple)
Eigenvalues and eigenvectors:

N,N’ are
(g ) normalization
/Yll\ e /Xll\ 1) constants.
w. =0 Y, |=N,| 1 |, |X,|=N"]|1
Ry e X)L
/le\ (1) /Xlz\ (1)
0 =% Y2|=N, 0|, |X>|=N"|0
m
7 \Y32) .y, \X32/ .y,
/Yl3\ (1) /X13\ (1)
ag:k L2k Y, =N 25 |, | X, |=N'Y| 2
My Me y3 X3 1
) ) Ay Ly
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What about Hamiltonian formulation - notion of phase space.



.

Phase space

Phase space is defined at the set of all

coordinates and momenta of a system:

({g.®}.{p,®)})
For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

The notion of density of particles in phase space is
simply the ratio of the number of particles per unit phase
space volume. It seems reasonable that under
conditions where there are no sources or sinks for the
particles, that the density should remain constant in
time.


Presenter Notes
Presentation Notes
Notion of phase space



Phase space diagram for one-dimensional motion due to
constant force

p.
i p2 | . X p :
Hiup)=LoFx pr,  5=L
m m
o1
p.()=p,+Ft  x(t)=x, +L (+Ff’
m
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Presenter Notes
Presentation Notes
Example of time evolution of phase space.


Phase space diagram for one-dimensional motion due to
spring force

P
I:II_I:I:-I- I::'T' I::' I:I'|7I I:I'I-I- I I}Ilfi- I}?S X I 1|7' ll-l-
p. 1 2.2 2 P
H(x,p)=—+—mw’x ) =—mMO'X  X="—
( p) 2m 2 b m
p,(t) = p,; cos(awt +6,,) x (£) = Lo sin (et + 6, )
mao
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Presenter Notes
Presentation Notes
Another example of time evolution of phase space.


- Liouville’s Theorem (1838)

The density of representative
points in phase space
corresponding to the motion of a
system of particles remains
constant during the motion.

Joseph Liouville

lived from 1809 to 1882

Denote the density of particles in phase space: D = D({qa (1) }, { D, (t)}, t)

dD oD . oD . oD
- = - qo_ _|_ - po_ _|_ -
dt T\ oq, op.. ot
: L dD
According to Liouville's theorem: — =0

dt


Presenter Notes
Presentation Notes
Application to the density of phase space – Liouville theorm.


.

Liouville’s theorem

P X

—

; 1
(x,p+4p)

(x+4x,p+A4p)
oD
Ot —>
(x,p) pI (x+4x,p)
>

9/14/2023

X

PHY 337/637 Fall 2023-- Lecture 6
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Presenter Notes
Presentation Notes
Diagram of flow in phase space.


Liouville’s theorem -- continued I
A

(x,p+4p) (x+Ax,p+A4p)

P X oD

(%,p) pI (x+4x,p)

>
oD . X . oy
= = time rate of change of particles within volume
[
= time rate of particle entering minus particles leaving
oD . oD |,
= ——X — —p

Ox
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Presenter Notes
Presentation Notes
Some details.


Liouville’s theorem -- continued I
A

(x,p+A4p)

(x+Ax,p+A4p)

X
oD oD . oD .
ot ox op
oD oD . oD . dD
+—X+—p=0=—
ot Ox op dt

9/14/2023 PHY 337/637 Fall 2023-- Lecture 6
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Presenter Notes
Presentation Notes
More details.


Summary:

Liouville's theorem:
Imagine a collection of particles obeying the Canonical
equations of motion in phase space.

Let D denote the "distribution" of particles in phase space :

D= D({% "'%N}? {pl '"p3N}’t)

Liouville's theorm shows that :

D . o

a;T = () —> D 1S constant 1n time
[

Note that we are assuming that no particles are
created or destroyed in these processes.


Presenter Notes
Presentation Notes
Summary of Liouville theorem.


dD
dt
Importance of Liouville’s theorem to statistical
mechanical analysis:

0

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
In phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume. Computationally this can be
approximated using molecular dynamics or

sampling methods.
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Presenter Notes
Presentation Notes
Comment.


“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. ldeally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates {qo, (t)} represent

N atoms, each with 3 spacial coordinates:
L=L({g,®} {4, (0O}.1)=T-U

For simplicity, it 1s often assumed that the potential interaction

1s a sum of pairwise interactions:

U{r") = E wir,,} . (2.1)

<7


Presenter Notes
Presentation Notes
Brief introduction to the approach of H. C. Andersen


Z—Zuqn—rf‘)

r.

L=L{{rO}L 0] =D tmi

i i<j

=» From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).

9/14/2023 PHY 337/637 Fall 2023-- Lecture 6
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Presenter Notes
Presentation Notes
Schematic drawing of system modeled.


.

Lagrangian and Hamiltonian forms

L= L({ri(t)}’{l;i(t)}) - Z%ml ! 2 _Zu(‘r" _rf‘)

I

I i<j

Euler-Lagrange equations:

d I, ' r, —l’j
i~ = —Z,“ (‘rz- ‘rj‘)‘r_ _r" By solving these coupled
-~ " /1 equations, we can use
Hamiltonian formulation: our atomic scale ideas to
p, =mr, model macroscopic

|p. |z systems...
H = Z 2}’% +Z”(1} —rj‘)

i<j
Canonical equations:



Presenter Notes
Presentation Notes
Lagrangian and Hamiltonian of particle system.


.

Digression on numerical evaluation of differential equations
Example differential equation (one dimension);

2
dx—f(t) Let t=nh (n=12,3...)

dr*
x,=x(nh); f, = f(nh)

Euler's method :

1
X . =X +hv +§h2fn

Vn+1 — Vn + hf;a X

Velocity Verlet algorithm :

1
X, ., =X +hv +5h2f"

1
Vn+1 :Vn +5h(fn +fn+l)


Presenter Notes
Presentation Notes
The equations cannot generally be solved analytically so that numerical methods must be used.    This slide shows some of the ideas for numerical devaluations.
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