PHY 337/636 Analytical Mechanics
12:30-11:45 PM TR in Olin 103

Notes for Lecture 7: Rigid bodies —
Chap. 13 (Cline)

1. Rigid body motion
2. Notion of the center of mass
3. Moment of inertia tensor

4. Torque free motion
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CoLLoQuiuM -
SEPTEMBER 21sT, 2023

Phase Transformations via Surface Defects in
Halide Perovskites

Perovskite solar cells promise to yield efficiencies
beyond 30% by further improving the quality of the
materials and devices. Electronic defect
passivation and suppression of detrimental
charge-carrier recombination at the different
device interfaces has been used as a strategy to
achieve high performance perovskite solar cells.
However, the mechanisms that allow for carriers to
be transferred across these interfaces are still
unknown. Through the contributions to better
understand 2D and 3D defects the perovskite
solar cell field has been able to improve device
performance. Albeit the rapid improvements in
performance, there is still a need to understand
how these defects affect long term structural ]
stability and thus optoelectronic performance over JllE"LIl-PElblO

the long term. In this presentation, | will discuss

the role of crystal surface structural defects on Correa-Baena, PhD
optoelectronic  properties of lead halide Assistant Professor
perovskites through synchrotron-based School of Materials Science and
techniques. The importance of interfaces and their Engineering
contribution to detrimental recombination will also Georgia Institute of Technology

be discussed. Finally, a discussion on the current
state-of-the-art of performance and stability will be
presented.
4 pm - Olin 101
Refreshments will be served in Olin
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Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to textbook section listing
practice problems to be discussed at the course tutorials, and Assign is a link to the graded homework for the
lecture. The graded homeworks are due each Tuesday following the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading |Topic PP |Assign
1 |Tu, 8/29/2023 |Ch. 1 & 2 |Introduction, history, and motivation 2E [#1
2 [Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation SE [#2
3 [Tu, 9/05/2023 |Ch. 5 More examples of the calculus of variation |SE #3
4 |Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E [#4
5 |Tu, 9/12/2023 |Ch. 7 & 8 |Hamiltonian mechanics 8E [#5
6 Th, 9/14/2023 |Ch. 7 & 8 |Hamiltonian mechanics 8E
7 |Tu, 9/19/2023 |Ch. 13 Dynamics of rigid bodies 13E|[#6
8 |Th, 9/21/2023 |Ch. 13 Dynamics of rigid bodies 13E
9 [Tu, 9/26/2023 |Ch. 13 Dynamics of rigid bodies 13E
10 Th, 9/28/2023 |Ch. 11 Scattering theory 11E
11 Tu, 10/3/2023 |Ch. 11 Scattering theory 11E
12 Th, 10/5/2023
13 Tu, 10/10/2023

Th, 10/12/2023 [Fall Break
14 Tu, 10/17/2023
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Presenter Notes
Presentation Notes
In this lecture we will consider the rotational motion of rigid bodies as presented in Chapter 13 of your textbook.


PHY 711 -- Assignment #6

Assigned: 9/19/2023 Due: 9/26/2023

Read Chapter 13 in Cline.

R1=(-a/2,-a/2,a/2)
r z

3m
3m

R,=(a/2,a/2,a/2)

>y
(—a/2,a/2,—a/2)

m
R,=(a/2,~a/2,~a/2)
The figure shows a system with 4 masses held rigidly at the given locations with massless supports similar to the example in lecture.

a. Evaluate the moment of inertia tensor for this system.
b. Find the principal moments of inertia.
c. Find the corresponding principal axes.
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Up to now, we have considered the motions of idealized
point particles of mass m, moving along a trajectory with
generalized coordinates q_(f) according to Newton’s laws
and the Lagrangian and Hamiltonian equations of motion.
In this case, the kinetic energy of the particle depends only
on the squared velocity of the particle scaled by its mass
m.

For example, the kinetic energy of point mass m

expressed in Cartesian coordinates 1s

K:%m()'c2+j/2+z'2)

In studying rigid body motion, we consider a system with
distributed mass in which the motion is more complicated.



Example of a rigid body system consisting of two
masses:

Center of mass:

X
zm

With rigid bodies, we should consider motion of the
body, both relative to an inertial frame of reference and
also internal motion of the body. For rigid body motion,
it is assumed that no deformations or vibrations occur. It
turns out that the details of the shape of the rigid body
can be characterized by the "moment of inertia tensor”
to describe the internal motion, while the overall motion

will also be important.




https://www.dkfindout.com/us/space/solar-system/earths-orbit/

® Earth’s axis

Day
—— Direction of Earth’s orbit
/

®
Summer at North Pole / .\

Winter at North
Pole

‘ \ Sunllght

Winter at

e \

Equator

Summer at
South Pole

Night

Knowing that the laws of physics are most conveniently applied
with in an inertial frame of reference, we will focus on how to
analyze rotations of a rigid body.
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https://www.dkfindout.com/us/space/solar-system/earths-orbit/

The physics of rigid body motion; body fixed frame vs
inertial frame

Figure 6.1 Transformation (o & rolating ©o-
ordinate system.

Let V be a general vector, e.g., the position of a particle. This vector can be

characterized by its components with respect to either orthonormal triad. Thus we
can write

3
V= Y Vo (6.1a)

V= §Vé (6.1b)
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Presenter Notes
Presentation Notes
Determining the relationship between the inertial and body frames.


Comparison of analysis in “inertial frame” versus
“non-inertial frame”

Denote by &’ a fixed coordinate system

Denote by ¢, a moving coordinate system
3

3
For an arbitrary vector Vi V=)V’ => V¢

I
i=1 [

dV AV AV, <, de
) Ty

=1
3

Detfine: (ﬂj Ezﬂé
body '

3 A
dt inertial dt body i=1 dt



Presenter Notes
Presentation Notes
Recall our previous discussion of rotating frames of reference.


Properties of the frame motion (rotation):

de e.
A
de. de, = dOe,
dé. = —dee,
= de=dOxe
de dO .
ar dr
. do,
> & T _pxe
dt

>

() ntie) oo (2] TNE
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Presenter Notes
Presentation Notes
Consider an infinitesimal rotation.


3 A
dt inertial dt body i=1 d [

) L)
— =| — +oxV
dt inertial dt body

Effects on acceleration:

(i) o\
—— =||— +@x | — +oxV
dt dt inertial dt body dt body

2 2
(d Yj =(d YJ +2wx(ﬂj +d—me+co><(x)><V
dt inertial dt body dt body dt
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Presenter Notes
Presentation Notes
Rotational acceleration.


Kinetic energy of rigid body,

rotating at angular velocity ®

( dr j r
— = +@®Xr
dt inertial body

=0 for rigid body

r=3gmy=Ygm o)
=3 mloxr, Hoxr, )
=Xy mle-o), n)-(, o]
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Presenter Notes
Presentation Notes
For a rigid body, internal motions are negligible.


Moment of 1nertia tensor:

I=>m, (lrp2 -~ rprp) (dyad notation)

Matrix notation :

(I XX / Xy ! Xz |
I, I, I,
[, 1

zX zz /

o
i

yXx

]

[ _Zmp(5yrp —rr)
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Presenter Notes
Presentation Notes
It is convenient to group terms that depend on the body geometry – leading to the definition of the moment of inertia tensor.


Moment of 1nertia tensor:

I=>m, (lrp2 - rprp) (dyad notation)
P

Note: For a given object and a given coordinate system,

one can find the moment of inertia matrix
Z

Matrix notation :

(]xx ]xy [xz\
I=\7, [, [,
I 1

zy zz )

]ZX
]..Ezm (5..r2—r.r.)
ij p \Vij'p pi' p
P

shutterstock.com = 497456917

X
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Moment of 1inertia in

original coordinates

( ]xx [ xy [ Xz \
=7, 1, I,
I, I, 1

zy zz )

\ zZX
I..Ezm (5..r2—r.r.)
ij r\Yii'p pi' pj
p

shutter ek com - 497456917

X x’

Moment of 1nertia in principal axes (x’,y’,z’)

(I, 0 0
I=|0 I, O
0 04
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Angular momentum of rigid body:

( dr j ( r
— = +OXTr
dt inertial d ody

=0 for rigid body

> (%jinertial = Vinertiar — QXTI r—or
L:erx(mpvp)=2mprpx(mxrp)
p p
:Zmp ((n re -, (m-rp)):f-m
p

where I= Zmp (lrp2 —rprp)
p
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Presenter Notes
Presentation Notes
The angular momentum can also be calculated.


An example with 4 point masses and massless rigid bonds

- 2
IEZmP(lrj—rprp) R12:R22:R32=Rj=3%
P
2
=(—a/2,—a/2,a/2 A" [ A A AN, A A
Ry =( 47 ) R1R1:T(_x_y+z)(_x_y+
2m
R,=(a/2,a/2,a/2)
2m, y
=(—a/2,a/2,—a/2)
p R, (3 _% 0)
m ) — 21 _1
R,=(a/2,-a/2,-a/2) I'=ma 2 3 0
L0 0 3,
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Example continued -- I

Zmp (lrp2 -y, )
p

R1=(—afAZ,—af2,al2)

Z
2m
R2=(a!2,312,3f2)
2m,y ( 3 _% O\
=(—a/ 2,3/ 29_312)
m & I:ma2 _% 3 0
m M
R4=(af2,—3f2a_a}'2) \ O O 3)
[lzgmaz Vi = %(f(—f’)
Principal moments: jzzgmaz v, = %(Xﬂ’)

2 A
I, =3ma" v,=1Z
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Z Example:

C
>y
|
\ b
Moment of 1nertia tensor :
X 4 2 2 \
%(b +c ) —ab —Jac
I=M —ab %(a2+cz) —+bc
| —ac —+bc %(a2+b2)/
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Presenter Notes
Presentation Notes
Consider a simple rectangular solid with a coordinate system at the edge of the system.


Properties of moment of inertia tensor:
» Symmetric matrix =»real eigenvalues /,,/,,1;
> =»orthogonal eigenvectors

Ie=1¢e i=1,23

Moment of 1inertia tensor :

/%(b2+02) —ab —Llge )
I=M —ab T a’+c’ —+bc
L —ac —+bc %(a2+b2)j



Presenter Notes
Presentation Notes
The moment of inertia tensor in matrix form is a symmetric matrix and therefore can be diagonalized.   The eigenvalues are known as principal moments of inertia and the eigenvectors are known as principal axes.


Chan

Z
A

ging origin of rotation
: ]yzzmp(§ﬁr;_rpirpj)
p

Z

- 12 0 ' )
]y—zmp(5zy"’p Popi T
p

"
rp—rp+R

Define the center of mass:

2mE,  2mr,
p — P

I'. =

y

9/19/2023

r — =
CM
Em M
P
P

I, +M(R*S, —RR, )+ M(2ry, ‘RS, —re,R, = Rieyy )

y
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Presenter Notes
Presentation Notes
Here we consider what happens when we evaluate the moment of inertia tensor about a different origin.   In this case, the new origin  happens to be at the center of mass.


I'y=1,+M(R*5, - RR, )+ M(2rs, RS, —reyiR, — Rircyy )

9/19/2023

Supposethat R=—4x-2y—-£7Z
and r,, = —R
2
I',=1,-M(R5,~RR,)
>y %(b2 + cz) —Lab —Lac
I'=M| —<ab %(a2 +c2) —+bc
——ac —+bc %(az +b2)
%(b2 +cz) —Lab —ac
- M| —;ab %(az + cz) —+bc
—<ac —+bc %(a2 +b2)
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Presenter Notes
Presentation Notes
Some details.


Note: This is a special case;
changing the center of rotation
does not necessarily result in a
diagonal I’

9/19/2023

\

>y
(b2 +c2) 0 0
%(ax2 +02) 0
0 0 L(a* +b7)
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Presenter Notes
Presentation Notes
When the dust clears for this case.     Note that I’ happens to be diagonal already,       however it is not generally true that shifting the origin for the moment of inertia would result in a diagonal matrix.


Descriptions of rotation about a given origin

For general coordinate system

1
Tz—Z]ija)l.a)j
25

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor :

e=1Ié i=123

1

o §

n~~ AN

l
= w,€,+0,€,+w,€,

D

=T :%21@,—2
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Presenter Notes
Presentation Notes
In the next slides we will focus on the fact that each rigid body has 3 principal axes and 3 moments of inertia for a given origin.     It is often convenient to use that coordinate system to analyze rigid body motion.


.

Descriptions of rotation about a given origin -- continued
Time rate of change of angular momentum

%)
T texL
di \ dt ),,

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor:


Presenter Notes
Presentation Notes
Here we consider the angular moment expressed in the diagonalized body fixed frame of reference.


S
Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL [ dL
dr (E
is very difficult to solve directly in the body fixed frame.

j +oxL="1
body

For T = 0 we can solve the Euler equations :

dL ~ A ~ A ~ A ~ o~ A
— = 1,0,8,+1,0,8,+1,0,8,+@,0,(1, — I, ,

"'5357)1([1 _[3)é2+515)2([2 _]1)é3: 0


Presenter Notes
Presentation Notes
While it is very difficult to express torque in this reference frame, we can readily solve problems with zero torque.


%Lorqueless Euler equations for rotation in body fixed frame:
1@, + @,0, (1, - 1,) =0
L&, + @0, (1, - 1,) =0
L&, +&d,(1,-1,)=0
= Solution for symmetric object with 7, = /;:
1@, +@,6, (I, —1,)=0
L&, +@,0, (1, —1,)=0

[0, =0 —> w, = (constant) .
I —] W, = —C()2Q

Define: Q=ao, >— o
I, w, = @,



Presenter Notes
Presentation Notes
For the general system with three distinct moment of inertia, the solutions are difficult, but simplifications occur when two moments are the same, in this I1=I2.


Solution of Euler equations for symmetric object continued

@, = —®,L @, = @,
! 3 / 1
Il
Solution: @, (1) = Acos(L2t + @)
@, (t) = Asin(Q2 + @)

~/

@,(t) = @, (constant)
= 1211.553 = l11/12 + 113532
2 2

L=1we+1,0.e,+1,0,e,
=1, A(cos(Qz + @&, +sin(Qr + @&, )+ 1,@,6,

where Q = @,

l


Presenter Notes
Presentation Notes
Time dependence of the symmetric top in free space


%Lorqueless Euler equations for rotation in body fixed frame:
1,6, + @,0, (I, = 1,) =0
L&, + @6, (1, - 1,)=0

L, +&@,(1,—1,)=0
= Solution for asymmetric object: [, # [, # [:

L&, +@,0,(1,—1,)=0
Lo, +@,6,(1,—1,)=0

Lé, + @@, (I, -1,)=0

Suppose: @, ~0 Define: Q, = o,

Define: 2, = @,



Presenter Notes
Presentation Notes
Now consider the more general case.


Euler equations for rotation in body fixed frame:
[151 T @253(13 _]2): 0
L, +a,w,(1, —1,)=0

]353 +a~51@2(]2 _]1):()

Solution for asymmetric object I, = 1, # [:

Approximate solution --
- 1 —1,

Suppose: @, =0 Define: Q, = @, 7
1

]3_]1
[2

Define: Q, = o,


Presenter Notes
Presentation Notes
Reasonable approximations.


Euler equations for asymmetric object continued
1,é&, + &,0, (I, 1,)=0
Lé, +&,6,(1,-1,)=0
Lo, +&@,(1,-1,)=0
ARY A

If @, ~0, Define: Q, = 0)3]— Q, = o,
1

w, = —,, w, =L2,,

If Q, and Q, are both positive or both negative:

o, (1)~ A cos(w/QIQQt + gp)
, (1) = A\/% sin(w/Qlﬂzt + ga)
1

= If Q, and (2, have opposite signs, solution 1s unstable.


Presenter Notes
Presentation Notes
We see that there are conditions that allow stability for this system,.   --- to be continued.
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