PHY 337/637 Analytical Mechanics
12:30-1:45 PM TR in Olin 103

Notes for Lecture 8: Rigid bodies —
Chap. 13 (Cline)

1. Comment about HW #5

2. More about moment of inertia tensor
2. Torque free motion

3. Euler angles
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CoLLoQuiuM -
SEPTEMBER 21sT, 2023

Phase Transformations via Surface Defects in
Halide Perovskites

Perovskite solar cells promise to yield efficiencies
beyond 30% by further improving the quality of the
materials and devices. Electronic defect
passivation and suppression of detrimental
charge-carrier recombination at the different
device interfaces has been used as a strategy to
achieve high performance perovskite solar cells.
However, the mechanisms that allow for carriers to
be transferred across these interfaces are still
unknown. Through the contributions to better
understand 2D and 3D defects the perovskite
solar cell field has been able to improve device
performance. Albeit the rapid improvements in
performance, there is still a need to understand
how these defects affect long term structural ]
stability and thus optoelectronic performance over JllE"LIl-PElblO

the long term. In this presentation, | will discuss

the role of crystal surface structural defects on Correa-Baena, PhD
optoelectronic  properties of lead halide Assistant Professor
perovskites through synchrotron-based School of Materials Science and
techniques. The importance of interfaces and their Engineering
contribution to detrimental recombination will also Georgia Institute of Technology

be discussed. Finally, a discussion on the current
state-of-the-art of performance and stability will be
presented.
4 pm - Olin 101
Refreshments will be served in Olin
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Course schedule

In the table below, Reading refers to the chapters in the Cline textbook , PP refers to
textbook section listing practice problems to be discussed at the course tutorials, and Assign
is a link to the graded homework for the lecture. The graded homeworks are due each
Tuesday following the associated lecture.

(Preliminary schedule -- subject to frequent adjustment.)

Date Reading |Topic PP |Assign
1 |Tu, 8/29/2023 ||Ch. 1 & 2 |Introduction, history, and motivation 2E [#1
2 |Th, 8/31/2023 |Ch. 5 Introduction to Calculus of variation SE [#2
3 [Tu, 9/05/2023 |Ch. 5 More examples of the calculus of variation |SE #3
4 |Th, 9/07/2023 |Ch. 6 Lagrangian mechanics 6E [#4
S |Tu, 9/12/2023 |Ch. 7 & 8 [Hamiltonian mechanics 8E [#5
6 Th, 9/14/2023 |Ch. 7 & 8 [Hamiltonian mechanics 8E
7 [Tu, 9/19/2023 |Ch. 13 Dynamics of rigid bodies 13E [#6
8 |Th, 9/21/2023 |Ch. 13 Dynamics of rigid bodies 13E [#7
9 [Tu, 9/26/2023 |Ch. 13 Dynamics of rigid bodies 13E
10|Th, 9/28/2023 |Ch. 11 Scattering theory 11E
11 Tu, 10/3/2023 |Ch. 11 Scattering theory 11E
12 Th, 10/5/2023
13 Tu, 10/10/2023

Th, 10/12/2023 [Fall Break
14 Tu, 10/17/2023
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Presenter Notes
Presentation Notes
In this lecture we will consider the rotational motion of rigid bodies as presented in Chapter 5 of your textbook.


PHY 711 -- Assignment # 7

Assigned: 9/21/2023 Due: 9/26/2023

This 1s an opportunity to re-examine HW 5 and earn more points for your
corrected solution (up to 90 percent of the 2 point total).
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PHY 337/637 — Assignment # 5
Assigned: 09/12/2023  Due: 09/19/2023

This exercise uses the Lagangian and Hamiltonian formalisms.

1. Suppose that the motion of a point particle of mass m can be described in cartesian coordinates
by the Lagrangian

1
Liz,y. 20,4, 5,1) = gm (& +° + ) + Cuz
where C' is a positive constant having the units of mass/time. At t = 0, the initial coordinates

of the particle are 2(0) = y(0) = z(0) = 0 and the initial velocities are &(0) = y(0) = 0 and
2(0) = V.

(a) Write the Euler-Lagrange equations for this system and solve them to find the trajectories
of the particle z(t), y(t), z(t).

(b) Evaluate the Hamiltonian for this system using the Legendre transformation and put it
into Canonical form.

(c) Evaluate and solve the Canonical equations of motion for this system and compare your
answer with part (a).
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Moment of 1nertia tensor:

I=>m, (lrp2 - rprp) (dyad notation)
P

Note: For a given object and a given coordinate system,

one can find the moment of inertia matrix
Z

Matrix notation :

(]xx ]xy [xz\
I=\7, [, [,
I 1

zy zz )

]ZX
]..Ezm (5..r2—r.r.)
ij p \Vij'p pi' p
P

shutterstock.com = 497456917

X
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Moment of 1inertia in

original coordinates

( ]xx [ xy [ Xz \
=7, 1, I,
I, I, 1

zy zz )

\ zZX
I..Ezm (5..r2—r.r.)
ij r\Yii'p pi' pj
p

shutter ek com - 497456917

X x’

Moment of 1nertia in principal axes (x’,y’,z’)

(I, 0 0
I=|0 I, O
0 04
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z Example:

C
>y
|
\ b
Moment of 1nertia tensor :
X 4 2 2 \
%(b +c ) —ab —Jac
I=M —ab %(a2+cz) —+bc
| —ac —+bc %(a2+b2)/
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Presenter Notes
Presentation Notes
Consider a simple rectangular solid with a coordinate system at the edge of the system.


Properties of moment of inertia tensor:
» Symmetric matrix =»real eigenvalues /,,/,,1;
> =»orthogonal eigenvectors

Ie=1¢e i=1,23

Moment of 1inertia tensor :

/%(b2+02) —ab —Llge )
I=M —ab T a’+c’ —+bc
L —ac —+bc %(a2+b2)j



Presenter Notes
Presentation Notes
The moment of inertia tensor in matrix form is a symmetric matrix and therefore can be diagonalized.   The eigenvalues are known as principal moments of inertia and the eigenvectors are known as principal axes.


Chan

Z
A

ging origin of rotation
: ]yzzmp(§ﬁr;_rpirpj)
p

Z

- 12 0 ' )
]y—zmp(5zy"’p Popi T
p

"
rp—rp+R

Define the center of mass:

2mE,  2mr,
p — P

I'. =

y

9/21/2023

r — =
CM
Em M
P
P

I, +M(R*S, —RR, )+ M(2ry, ‘RS, —re,R, = Rieyy )

y
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Presenter Notes
Presentation Notes
Here we consider what happens when we evaluate the moment of inertia tensor about a different origin.   In this case, the new origin  happens to be at the center of mass.


.

I'y=1,+M(R*5, - RR, )+ M(2rs, RS, —reyiR, — Rircyy )

9/21/2023

Supposethat R=—4x-2y—-£7Z
and r,, = —R
2
I',=1,-M(R5,~RR,)
>y %(b2 + cz) —Lab —Lac
I'=M| —<ab %(a2 +c2) —+bc
——ac —+bc %(az +b2)
%(b2 +cz) —Lab —ac
- M| —;ab %(az + cz) —+bc
—<ac —+bc %(a2 +b2)
PHY 337/637 Fall 2023-- Lecture 8 1



Presenter Notes
Presentation Notes
Some details.


Note that changing origin of
coordinate system changes
A Z moment of inertia tensor.

Note: This is a special case;
changing the center of rotation
—~ Y does not necessarily result in a

diagonal I’
(67 +¢?) 0 0 )
%(az +cz) 0
0 0 L(a*+07),
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Presenter Notes
Presentation Notes
When the dust clears for this case.     Note that I’ happens to be diagonal already,       however it is not generally true that shifting the origin for the moment of inertia would result in a diagonal matrix.


Descriptions of rotation about a given origin

For general coordinate system

1
Tz—Z]ija)l.a)j
25

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor :

e=1Ié i=123

1

o §

n~~ AN

l
= w,€,+0,€,+w,€,

D

=T :%21@,—2
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Presenter Notes
Presentation Notes
In the next slides we will focus on the fact that each rigid body has 3 principal axes and 3 moments of inertia for a given origin.     It is often convenient to use that coordinate system to analyze rigid body motion.


.

Descriptions of rotation about a given origin -- continued
Time rate of change of angular momentum

%)
T texL
di \ dt ),,

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor:


Presenter Notes
Presentation Notes
Here we consider the angular moment expressed in the diagonalized body fixed frame of reference.


S
Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL [ dL
dr (E
is very difficult to solve directly in the body fixed frame.

j +oxL="1
body

For T = 0 we can solve the Euler equations :

dL ~ A ~ A ~ A ~ o~ A
— = 1,0,8,+1,0,8,+1,0,8,+@,0,(1, — I, ,

"'5357)1([1 _[3)é2+515)2([2 _]1)é3: 0


Presenter Notes
Presentation Notes
While it is very difficult to express torque in this reference frame, we can readily solve problems with zero torque.


%Lorqueless Euler equations for rotation in body fixed frame:
1@, + @,0, (1, - 1,) =0
L&, + @0, (1, - 1,) =0
L&, +&d,(1,-1,)=0
= Solution for symmetric object with 7, = /;:
1@, +@,6, (I, —1,)=0
L&, +@,0, (1, —1,)=0

[0, =0 —> w, = (constant) .
I —] W, = —C()2Q

Define: Q=ao, >— o
I, w, = @,



Presenter Notes
Presentation Notes
For the general system with three distinct moment of inertia, the solutions are difficult, but simplifications occur when two moments are the same, in this I1=I2.


Solution of Euler equations for symmetric object continued

@, = —®,L @, = @,
! 3 / 1
Il
Solution: @, (1) = Acos(L2t + @)
@, (t) = Asin(Q2 + @)

~/

@,(t) = @, (constant)
= 1211.553 = l11/12 + 113532
2 2

L=1we+1,0.e,+1,0,e,
=1, A(cos(Qz + @&, +sin(Qr + @&, )+ 1,@,6,

where Q = @,

l


Presenter Notes
Presentation Notes
Time dependence of the symmetric top in free space


%Lorqueless Euler equations for rotation in body fixed frame:
1,6, + @,0, (I, = 1,) =0
L&, + @6, (1, - 1,)=0

L, +&@,(1,—1,)=0
= Solution for asymmetric object: [, # [, # [:

L&, +@,0,(1,—1,)=0
Lo, +@,6,(1,—1,)=0

Lé, + @@, (I, -1,)=0

Suppose: @, ~0 Define: Q, = o,

Define: 2, = @,



Presenter Notes
Presentation Notes
Now consider the more general case.


Euler equations for rotation in body fixed frame:
[151 T @253(13 _]2): 0
L, +a,w,(1, —1,)=0

]353 +a~51@2(]2 _]1):()

Solution for asymmetric object I, = 1, # [:

Approximate solution --
- 1 —1,

Suppose: @, =0 Define: Q, = @, 7
1

]3_]1
[2

Define: Q, = o,


Presenter Notes
Presentation Notes
Reasonable approximations.


Euler equations for asymmetric object continued
1,é&, + &,0, (I, 1,)=0
Lé, +&,6,(1,-1,)=0
Lo, +&@,(1,-1,)=0
ARY A

If @, ~0, Define: Q, = 0)3]— Q, = o,
1

w, = —,, w, =L2,,

If Q, and Q, are both positive or both negative:

o, (1)~ A cos(w/QIQQt + gp)
, (1) = A\/% sin(w/Qlﬂzt + ga)
1

= If Q, and (2, have opposite signs, solution 1s unstable.


Presenter Notes
Presentation Notes
We see that there are conditions that allow stability for this system,.   --- to be continued.


.

Summary of previous results
describing rigid bodies rotating
about a fixed origin @

dr
— =@WXr
dt inertial

Kinetic energy: T = Zp:%mp"; = Zp:%mp (‘mxrp‘)
1
:ngP(mxrp)-(mxrp)
P
1
=25 [(w-m)(rp °rp)_(rp °m)2}

1 N szmP(lrj—rprp)

P
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Presenter Notes
Presentation Notes
Review of notions of rigid body motion.


Moment of inertia tensor
Matrix notation:

/[xx [xy [xz\
=1, 1, I.| 1,=) m,(8r —r.r,)
Klzx ]zy ]ZZ/ g
For general coordinate system: 7T =—) [.w.o,
2 - y-ittJ
For (body fixed) coordinate system that diagonalizes
moment of inertia tensor: I1-é =7¢ i=1,2,3
A 1 -
0=0¢+0,e,+ae, =T=—> I’

25


Presenter Notes
Presentation Notes
In general there is a symmetric tensor which defines the moment of inertia.    By rotating the coordinates about a fixed origin we can find the matrix in diagonal form.


Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL [ dL
dr (E
1s very difficult to solve directly in the body fixed frame.

j +oxL=1
body

For T =0 we can solve the Euler equations:

dL 4 A 2 oA 2 A
—=0=/we,+],w,e,+],0e,+

dt

0,0, (1, - 1,)e +@,0,(1, - I,)e,+&a,(1,—I,)e,

Lo +o,w.(l,—1,)=0

i 2 3( 3 2) Want to determine

[2 , + o, 1( [1 — [3) =() angular velocities o, ()
Lo, + 0,6, (1, —-1,)=0


Presenter Notes
Presentation Notes
When there is zero torque acting on the system, the angular velocity components are coupled through these Euler equations.


Transformation between body-fixed and inertial
coordinate systems — Euler angles

Z inertial
A

2
bod i
T f’\
< 33 /
( \

From section 13.13 of Cline

Comment — Since this is an old and
intriguing subject, there are a lot of
terminologies and conventions, not all of
which are compatible. We are following
the convention found in your textbook
mechanics texts and NOT the convention
found in most quantum mechanics texts.
Euler’s main point is that any rotation can
be described by 3 successive rotations
about 3 different (not necessarily
orthogonal) axes. In this case, one is
along the inertial z axis and another is
along the body fixed 3 axis. The middle
rotation is along an intermediate n axis.
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Presenter Notes
Presentation Notes
In order to consider motion of a rigid body more generally, in the presence of torque, it will be necessary to consider how to relate the body – fixed coordinates that diagonalize the moment of inertia tensor to another coordinate system which in general be an inertial coordinate system.    Here again, we use ideas of Euler.     This notation or it is equivalent is typically consistent with quantum mechanics text books.


> N

2 ~ L A
O=¢72+0n+y e,
N \8
N v Need to express all components in
i _fi .
¢ body-fixed frame:
x ~ . ~ AN ~ N\ ~ N\
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Presenter Notes
Presentation Notes
Euler said that the transformation of body-fixed  inertial frames can be accomplished in 3 steps and the corresponding angles are alpha, beta, and gamma.   In this case, we want to express all results in the body fixed frame.


Euler’s idea:
O=¢9p7Z+0n+y e,
Practical idea:

,€, T ;€

, = @(sinOsiny )+ O cosy
@, = $(sinOcosy ) —Gsiny

@, = dcos O+
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Presenter Notes
Presentation Notes
We can express the angular velocities in terms of the time rate of change of the alpha, beta, and gamma Euler angles.   We can also express the rotation axes in terms of the instantaneous Euler angles as well.  Here is the transformation of the middle axis.


= W T W,C, T W€,

O = [&(sin@sinw)+ écosw}él

+ ¢5(siné’cosw)—6"sinr,y]é2

+_¢COSQ+W]é3
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Presenter Notes
Presentation Notes
Result to remember.


Rotational kinetic energy

— 1. ., 1. ., 1 .
T(¢,9,W,¢,€,W):§]1a)12 +E]2a)22 +E]3a)32

:%]1 [&(sin@sinw)wL écosw]z

+%I2 [é(sin@cos w)— ésinw}z

+%]3 [¢C089+W]2

Il =1, :

T(¢,9,W,¢,9,W) = %[l [¢2 sin’ 0+92]+%[3 [¢50056’+w}2


Presenter Notes
Presentation Notes
General expression of the rotational kinetic energy and the special case of the symmetric top.


Recap --
Transformation between body-fixed and inertial
coordinate systems — Euler angles

Z inertial
A
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Presenter Notes
Presentation Notes
In addition to the dynamic transformation needed for rigid body mechanics,  this formalism is more generally useful when relating coordinate systems of different orientations.


Motion of a symmetric top under the influence of the
torque of gravity:

y
Line of nodes
Lagrangian
L(¢, 0,v,p, 9,;&) = %Il [¢2 sin” @ + 92]+%[3 [&cosé’ﬂ/JT

— Mgh cos 6
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Presenter Notes
Presentation Notes
Now consider the motion of a symmetric top in which the pivot point is fixed and torque is applied by gravity acting at the center of mass of the top.   Here l denotes the distance of the pivot point to the center of mass.


http://www.physics.usyd.edu.au/~cross/SPINNING%20TOPS.htm

See also --

9/21/2023

Home > American Journal of Physics > Volume 81, Issue 4 > 10.1119/1.4776195

@ Full . Published Online: 18 March 2013 Accepted: December 2012

The rise and fall of spinning tops

American Journal of Physics 81, 280 (2013); https://doi.org/10.1119/1.4776195
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http://www.physics.usyd.edu.au/%7Ecross/SPINNING%20TOPS.htm




https://drive.google.com/file/d/0B14RyYwpwSDNcXdxTWI3OExHX1k/view
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