PHY 337/637 Analytical Mechanics 12:30-1:45 PM TR in Olin 103

Notes for Lecture 8: Rigid bodies Chap. 13 (Cline)

1. Comment about HW \#5
2. More about moment of inertia tensor
3. Torque free motion
4. Euler angles

Colloquium

Perovskite solar cells promise to yield efficiencies beyond 30% by further improving the quality of the materials and devices. Electronic defect passivation and suppression of detrimental charge-carrier recombination at the different device interfaces has been used as a strategy to achieve high performance perovskite solar cells. However, the mechanisms that allow for carriers to be transferred across these interfaces are still unknown. Through the contributions to better understand 2D and 3D defects the perovskite solar cell field has been able to improve device performance. Albeit the rapid improvements in performance, there is still a need to understand how these defects affect long term structural stability and thus optoelectronic performance over the long term. In this presentation, I will discuss the role of crystal surface structural defects on optoelectronic properties of lead halide perovskites through synchrotron-based techniques. The importance of interfaces and their contribution to detrimental recombination will also be discussed. Finally, a discussion on the current state-of-the-art of performance and stability will be presented.

Juan-Pablo
Correa-Baena, PhD
Assistant Professor
School of Materials Science and Engineering Georgia Institute of Technology

$$
4 \text { pm - Olin } 101
$$

Refreshments will be served in Olin

Course schedule

In the table below, Reading refers to the chapters in the Cline textbook, PP refers to textbook section listing practice problems to be discussed at the course tutorials, and Assign is a link to the graded homework for the lecture. The graded homeworks are due each Tuesday following the associated lecture.
(Preliminary schedule -- subject to frequent adjustment.)

| | Date | Reading | Topic | PP | Assign |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Tu, 8/29/2023 | Ch. $\& \& 2$ | Introduction, history, and motivation | 2 E | $\# 1$ |
| $\mathbf{2}$ | $\mathrm{Th}, 8 / 31 / 2023$ | Ch. 5 | Introduction to Calculus of variation | 5 E | $\# 2$ |
| $\mathbf{3}$ | $\mathrm{Tu}, 9 / 05 / 2023$ | Ch. 5 | More examples of the calculus of variation | 5 E | $\# 3$ |
| $\mathbf{4}$ | $\mathrm{Th}, 9 / 07 / 2023$ | Ch. 6 | Lagrangian mechanics | 6 E | $\# 4$ |
| $\mathbf{5}$ | $\mathrm{Tu}, 9 / 12 / 2023$ | Ch. $7 \& 8$ | Hamiltonian mechanics | 8 E | $\# 5$ |
| $\mathbf{6}$ | $\mathrm{Th}, 9 / 14 / 2023$ | Ch. $7 \& 8$ | Hamiltonian mechanics | 8 E | |
| $\mathbf{7}$ | $\mathrm{Tu}, 9 / 19 / 2023$ | Ch. 13 | Dynamics of rigid bodies | 13 E | $\# 6$ |
| $\mathbf{8}$ | $\mathrm{Th}, 9 / 21 / 2023$ | Ch. 13 | Dynamics of rigid bodies | 13 E | $\# 7$ |
| $\mathbf{9}$ | $\mathrm{Tu}, 9 / 26 / 2023$ | Ch. 13 | Dynamics of rigid bodies | 13 E | |
| $\mathbf{1 0}$ | $\mathrm{Th}, 9 / 28 / 2023$ | Ch. 11 | Scattering theory | 11 E | |
| $\mathbf{1 1}$ | $\mathrm{Tu}, 10 / 3 / 2023$ | Ch. 11 | Scattering theory | 11 E | |
| $\mathbf{1 2}$ | $\mathrm{Th}, 10 / 5 / 2023$ | | | | |
| $\mathbf{1 3}$ | $\mathrm{Tu}, 10 / 10 / 2023$ | | | | |
| | $\mathrm{Th}, 10 / 12 / 2023$ | Fall Break | | | |
| $\mathbf{1 4}$ | $\mathrm{Tu}, 10 / 17 / 2023$ | | | | |

PHY 711 -- Assignment \# 7

Assigned: 9/21/2023 Due: 9/26/2023
This is an opportunity to re-examine HW 5 and earn more points for your corrected solution (up to 90 percent of the 2 point total).

PHY 337/637-Assignment \# 5

Assigned: 09/12/2023 Due: 09/19/2023

This exercise uses the Lagangian and Hamiltonian formalisms.

1. Suppose that the motion of a point particle of mass m can be described in cartesian coordinates by the Lagrangian

$$
L(x, y, z, \dot{x}, \dot{y}, \dot{z}, t)=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+C x \dot{z}
$$

where C is a positive constant having the units of mass/time. At $t=0$, the initial coordinates of the particle are $x(0)=y(0)=z(0)=0$ and the initial velocities are $\dot{x}(0)=\dot{y}(0)=0$ and $\dot{z}(0)=V_{0}$.
(a) Write the Euler-Lagrange equations for this system and solve them to find the trajectories of the particle $x(t), y(t), z(t)$.
(b) Evaluate the Hamiltonian for this system using the Legendre transformation and put it into Canonical form.
(c) Evaluate and solve the Canonical equations of motion for this system and compare your answer with part (a).

Moment of inertia tensor:

$$
\stackrel{\rightharpoonup}{\mathbf{I}} \equiv \sum_{p} m_{p}\left(\mathbf{1} r_{p}^{2}-\mathbf{r}_{p} \mathbf{r}_{p}\right) \quad \text { (dyad notation) }
$$

Note: For a given object and a given coordinate system, one can find the moment of inertia matrix

Matrix notation :

$$
\begin{aligned}
& \overrightarrow{\mathbf{I}} \equiv\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right) \\
& I_{i j} \equiv \sum_{p} m_{p}\left(\delta_{i j} r_{p}^{2}-r_{p i} r_{p j}\right)
\end{aligned}
$$

shutterstock.com • 497456917
x

Moment of inertia in original coordinates

$$
\begin{aligned}
& \stackrel{\mathbf{I}}{\equiv} \equiv\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right) \\
& I_{i j} \equiv \sum_{p} m_{p}\left(\delta_{i j} r_{p}^{2}-r_{p i} r_{p j}\right)
\end{aligned}
$$

Moment of inertia in principal axes ($\left.x^{\prime}, y^{\prime}, z^{\prime}\right)$

$$
\overrightarrow{\mathbf{I}} \equiv\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right)
$$

$\uparrow^{\mathbf{Z}} \quad$ Example:

Moment of inertia tensor :

$$
\overrightarrow{\mathbf{I}}=M\left(\begin{array}{ccc}
\frac{1}{3}\left(b^{2}+c^{2}\right) & -\frac{1}{4} a b & -\frac{1}{4} a c \\
-\frac{1}{4} a b & \frac{1}{3}\left(a^{2}+c^{2}\right) & -\frac{1}{4} b c \\
-\frac{1}{4} a c & -\frac{1}{4} b c & \frac{1}{3}\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

Properties of moment of inertia tensor:
$>$ Symmetric matrix \rightarrow real eigenvalues I_{1}, I_{2}, I_{3}
, \rightarrow orthogonal eigenvectors

$$
\overrightarrow{\mathbf{I}} \cdot \hat{\mathbf{e}}_{i}=I_{i} \hat{\mathbf{e}}_{i} \quad i=1,2,3
$$

Moment of inertia tensor :

$$
\overrightarrow{\mathbf{I}}=M\left(\begin{array}{ccc}
\frac{1}{3}\left(b^{2}+c^{2}\right) & -\frac{1}{4} a b & -\frac{1}{4} a c \\
-\frac{1}{4} a b & \frac{1}{3}\left(a^{2}+c^{2}\right) & -\frac{1}{4} b c \\
-\frac{1}{4} a c & -\frac{1}{4} b c & \frac{1}{3}\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

For $a=b=c$:

$$
I_{1}=\frac{1}{6} M a^{2} \quad I_{2}=\frac{11}{12} M a^{2} \quad I_{3}=\frac{11}{12} M a^{2}
$$

Changing origin of rotation

$$
\begin{aligned}
& I_{i j} \equiv \sum_{p} m_{p}\left(\delta_{i j} r_{p}^{2}-r_{p i} r_{p j}\right) \\
& I_{i j}^{\prime} \equiv \sum_{p} m_{p}\left(\delta_{i j} \prime_{p}^{\prime 2}-r_{p i}^{\prime} r_{p j}^{\prime}\right) \\
& \mathbf{r}_{p}^{\prime}=\mathbf{r}_{p}+\mathbf{R} \\
& \text { Define the center of mass : } \\
& \mathbf{r}_{C M}=\frac{\sum_{p} m_{p} \mathbf{r}_{p}}{\sum_{p} m_{p}} \equiv \frac{\sum_{p} m_{p} \mathbf{r}_{p}}{M} \\
& I_{i j}^{\prime}=I_{i j}+M\left(R^{2} \delta_{i j}-R_{i} R_{j}\right)+M\left(2 \mathbf{r}_{C M} \cdot \mathbf{R} \delta_{i j}-r_{C M i} R_{j}-R_{i} r_{C M j}\right)
\end{aligned}
$$

$$
I_{i j}^{\prime}=I_{i j}+M\left(R^{2} \delta_{i j}-R_{i} R_{j}\right)+M\left(2 \mathbf{r}_{C M} \cdot \mathbf{R} \delta_{i j}-r_{C M i} R_{j}-R_{i} r_{C M j}\right)
$$

Suppose that $\mathbf{R}=-\frac{a}{2} \hat{\mathbf{x}}-\frac{b}{2} \hat{\mathbf{y}}-\frac{c}{2} \hat{\mathbf{z}}$
and $\mathbf{r}_{\mathrm{CM}}=-\mathbf{R}$

$$
I_{i j}^{\prime}=I_{i j}-M\left(R^{2} \delta_{i j}-R_{i} R_{j}\right)
$$

$$
\begin{aligned}
& \xrightarrow{\mathbf{y}}\left(\begin{array}{ccc}
\frac{1}{3}\left(b^{2}+c^{2}\right) & -\frac{1}{4} a b & -\frac{1}{4} a c \\
-\frac{1}{4} a b & \frac{1}{3}\left(a^{2}+c^{2}\right) & -\frac{1}{4} b c \\
-\frac{1}{4} a c & -\frac{1}{4} b c & \frac{1}{3}\left(a^{2}+b^{2}\right)
\end{array}\right) \\
& -M\left(\begin{array}{ccc}
\frac{1}{4}\left(b^{2}+c^{2}\right) & -\frac{1}{4} a b & -\frac{1}{4} a c \\
-\frac{1}{4} a b & \frac{1}{4}\left(a^{2}+c^{2}\right) & -\frac{1}{4} b c \\
-\frac{1}{-} a c & -\frac{1}{4} b c & \frac{1}{4}\left(a^{2}+b^{2}\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{1}{12}\left(a^{2}+b^{2}\right)\right) \tag{0}
\end{equation*}
$$

> Note that changing origin of coordinate system changes moment of inertia tensor.

Descriptions of rotation about a given origin
For general coordinate system
$T=\frac{1}{2} \sum_{i j} I_{i j} \omega_{i} \omega_{j}$
For (body fixed) coordinate system that diagonalizes moment of inertia tensor :

$$
\begin{aligned}
& \widetilde{\mathbf{I}} \cdot \hat{\mathbf{e}}_{i}=I_{i} \hat{\mathbf{e}}_{i} \quad i=1,2,3 \\
& \boldsymbol{\omega}=\widetilde{\omega}_{1} \hat{\mathbf{e}}_{1}+\widetilde{\omega}_{2} \hat{\mathbf{e}}_{2}+\widetilde{\omega}_{3} \hat{\mathbf{e}}_{3} \\
& \Rightarrow T=\frac{1}{2} \sum_{i} I_{i} \widetilde{\omega}_{i}^{2}
\end{aligned}
$$

Descriptions of rotation about a given origin -- continued Time rate of change of angular momentum
$\frac{d \mathbf{L}}{d t}=\left(\frac{d \mathbf{L}}{d t}\right)_{b o d y}+\boldsymbol{\omega} \times \mathbf{L}$
For (body fixed) coordinate system that diagonalizes moment of inertia tensor:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{I}} \cdot \hat{\mathbf{e}}_{i}=I_{i} \hat{\mathbf{e}}_{i} \quad \boldsymbol{\omega}=\tilde{\omega}_{1} \hat{\mathbf{e}}_{1}+\tilde{\omega}_{2} \hat{\mathbf{e}}_{2}+\tilde{\omega}_{3} \hat{\mathbf{e}}_{3} \\
& \mathbf{L}=I_{1} \tilde{\omega}_{1} \hat{\mathbf{e}}_{1}+I_{2} \tilde{\omega}_{2} \hat{\mathbf{e}}_{2}+I_{3} \tilde{\omega}_{3} \hat{\mathbf{e}}_{3} \\
& \frac{d \mathbf{L}}{d t}=I_{1} \dot{\tilde{\omega}}_{1} \hat{\mathbf{e}}_{1}+I_{2} \dot{\tilde{\omega}}_{2} \hat{\mathbf{e}}_{2}+I_{3} \dot{\tilde{\omega}}_{3} \hat{\mathbf{e}}_{3}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right) \hat{\mathbf{e}}_{1} \\
& \\
& \quad+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right) \hat{\mathbf{e}}_{2}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right) \hat{\mathbf{e}}_{3}
\end{aligned}
$$

Descriptions of rotation about a given origin -- continued

Note that the torque equation
$\frac{d \mathbf{L}}{d t}=\left(\frac{d \mathbf{L}}{d t}\right)_{\text {body }}+\boldsymbol{\omega} \times \mathbf{L}=\boldsymbol{\tau}$
is very difficult to solve directly in the body fixed frame.
For $\boldsymbol{\tau}=0$ we can solve the Euler equations:

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =I_{1} \dot{\tilde{\omega}}_{1} \hat{\mathbf{e}}_{1}+I_{2} \dot{\tilde{\omega}}_{2} \hat{\mathbf{e}}_{2}+I_{3} \dot{\tilde{\omega}}_{3} \hat{\mathbf{e}}_{3}+\widetilde{\omega}_{2} \widetilde{\omega}_{3}\left(I_{3}-I_{2}\right) \hat{\mathbf{e}}_{1} \\
& +\widetilde{\omega}_{3} \widetilde{\omega}_{1}\left(I_{1}-I_{3}\right) \hat{\mathbf{e}}_{2}+\widetilde{\omega}_{1} \widetilde{\omega}_{2}\left(I_{2}-I_{1}\right) \hat{\mathbf{e}}_{3}=0
\end{aligned}
$$

Torqueless Euler equations for rotation in body fixed frame:
$I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0$
$I_{2} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0$
$I_{3} \dot{\tilde{\omega}}_{3}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right)=0$
\rightarrow Solution for symmetric object with $I_{2}=I_{1}$:
$I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{1}\right)=0$
$I_{1} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0$
$I_{3} \dot{\tilde{\omega}}_{3}=0 \quad \Rightarrow \tilde{\omega}_{3}=($ constant $)$
Define: $\Omega \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{1}}{I_{1}}$

$$
\begin{aligned}
& \dot{\tilde{\omega}}_{1}=-\widetilde{\omega}_{2} \Omega \\
& \dot{\tilde{\omega}}_{2}=\widetilde{\omega}_{1} \Omega
\end{aligned}
$$

Solution of Euler equations for symmetric object continued

$$
\dot{\tilde{\omega}}_{1}=-\tilde{\omega}_{2} \Omega \quad \dot{\tilde{\omega}}_{2}=\tilde{\omega}_{1} \Omega
$$

where $\Omega \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{1}}{I_{1}}$
Solution: $\quad \tilde{\omega}_{1}(t)=A \cos (\Omega t+\phi)$

$$
\left.\begin{array}{c}
\tilde{\omega}_{2}(t)=A \sin (\Omega t+\phi) \\
\tilde{\omega}_{3}(t)=\tilde{\omega}_{3} \quad(\text { constant }) \\
T
\end{array}=\frac{1}{2} \sum_{i} I_{i} \widetilde{\omega}_{i}^{2}=\frac{1}{2} I_{1} A^{2}+\frac{1}{2} I_{3} \widetilde{\omega}_{3}^{2}\right) ~=I_{1} \widetilde{\omega}_{1} \hat{\mathbf{e}}_{1}+I_{2} \widetilde{\omega}_{2} \hat{\mathbf{e}}_{2}+I_{3} \widetilde{\omega}_{3} \hat{\mathbf{e}}_{3} .
$$

Torqueless Euler equations for rotation in body fixed frame:

$$
I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0
$$

$$
I_{2} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0
$$

$$
I_{3} \dot{\tilde{\omega}}_{3}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right)=0
$$

\rightarrow Solution for asymmetric object: $I_{3} \neq I_{2} \neq I_{1}$:

$$
\begin{aligned}
& I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0 \\
& I_{2} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0 \\
& I_{3} \dot{\tilde{\omega}}_{3}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right)=0
\end{aligned}
$$

$$
\text { Suppose: } \quad \dot{\tilde{\omega}}_{3} \approx 0 \quad \text { Define: } \Omega_{1} \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{2}}{I_{1}}
$$

$$
\underset{\text { PHY } 3371637 \text { Fall2023-Lineetiures }}{ } \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{1}}{I_{2}}
$$

Euler equations for rotation in body fixed frame :
$I_{1} \dot{\widetilde{\omega}}_{1}+\widetilde{\omega}_{2} \widetilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0$
$I_{2} \dot{\tilde{\omega}}_{2}+\widetilde{\omega}_{3} \widetilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0$
$I_{3} \dot{\widetilde{\omega}}_{3}+\widetilde{\omega}_{1} \widetilde{\omega}_{2}\left(I_{2}-I_{1}\right)=0$
Solution for asymmetric object $I_{3} \neq I_{2} \neq I_{1}$:
Approximate solution --
Suppose: $\quad \dot{\tilde{\omega}}_{3} \approx 0 \quad$ Define: $\Omega_{1} \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{2}}{I_{1}}$
Define: $\Omega_{2} \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{1}}{I_{2}}$

Euler equations for asymmetric object continued
$I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0$
$I_{2} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0$
$I_{3} \dot{\tilde{\omega}}_{3}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right)=0$
If $\dot{\tilde{\omega}}_{3} \approx 0$,
Define: $\Omega_{1} \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{2}}{I_{1}}$
$\Omega_{2} \equiv \tilde{\omega}_{3} \frac{I_{3}-I_{1}}{I_{2}}$
$\dot{\widetilde{\omega}}_{1}=-\Omega_{1} \widetilde{\omega}_{2}$
$\dot{\tilde{\omega}}_{2}=\Omega_{2} \widetilde{\omega}_{1}$
If Ω_{1} and Ω_{2} are both positive or both negative:
$\widetilde{\omega}_{1}(t) \approx A \cos \left(\sqrt{\Omega_{1} \Omega_{2}} t+\varphi\right)$
$\widetilde{\omega}_{2}(t) \approx A \sqrt{\frac{\Omega_{2}}{\Omega_{1}}} \sin \left(\sqrt{\Omega_{1} \Omega_{2}} t+\varphi\right)$
\Rightarrow If Ω_{1} and Ω_{2} have opposite signs, solution is unstable.

Summary of previous results describing rigid bodies rotating about a fixed origin
$\left(\frac{d \mathbf{r}}{d t}\right)_{\text {inertial }}=\boldsymbol{\omega} \times \mathbf{r}$
Kinetic energy: $\quad T=\sum_{p} \frac{1}{2} m_{p} v_{p}^{2}=\sum_{p} \frac{1}{2} m_{p}\left(\left|\boldsymbol{\omega} \times \mathbf{r}_{p}\right|\right)^{2}$

$$
\begin{aligned}
& =\sum_{p} \frac{1}{2} m_{p}\left(\boldsymbol{\omega} \times \mathbf{r}_{p}\right) \cdot\left(\boldsymbol{\omega} \times \mathbf{r}_{p}\right) \\
& =\sum_{p} \frac{1}{2} m_{p}\left[(\boldsymbol{\omega} \cdot \boldsymbol{\omega})\left(\mathbf{r}_{p} \cdot \mathbf{r}_{p}\right)-\left(\mathbf{r}_{p} \cdot \boldsymbol{\omega}\right)^{2}\right] \\
& =\frac{1}{2} \boldsymbol{\omega} \cdot \stackrel{\rightharpoonup}{\mathbf{I}} \cdot \boldsymbol{\omega} \quad \stackrel{\mathbf{I}}{ } \equiv \sum_{p} m_{p}\left(\mathbf{1} r_{p}^{2}-\mathbf{r}_{p} \mathbf{r}_{p}\right)
\end{aligned}
$$

Moment of inertia tensor Matrix notation:

$$
\overrightarrow{\mathbf{I}} \equiv\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right) \quad I_{i j} \equiv \sum_{p} m_{p}\left(\delta_{i j} r_{p}^{2}-r_{p i} r_{p j}\right)
$$

For general coordinate system: $\quad T=\frac{1}{2} \sum_{i j} I_{i j} \omega_{i} \omega_{j}$
For (body fixed) coordinate system that diagonalizes moment of inertia tensor: $\quad \overrightarrow{\mathbf{I}} \cdot \hat{\mathbf{e}}_{i}=I_{i} \hat{\mathbf{e}}_{i} \quad i=1,2,3$
$\boldsymbol{\omega}=\tilde{\omega}_{1} \hat{\mathbf{e}}_{1}+\tilde{\omega}_{2} \hat{\mathbf{e}}_{2}+\tilde{\omega}_{3} \hat{\mathbf{e}}_{3} \quad \Rightarrow T=\frac{1}{2} \sum_{i} I_{i} \tilde{\omega}_{i}^{2}$

Descriptions of rotation about a given origin -- continued Note that the torque equation
$\frac{d \mathbf{L}}{d t}=\left(\frac{d \mathbf{L}}{d t}\right)_{b o d y}+\boldsymbol{\omega} \times \mathbf{L}=\boldsymbol{\tau}$
is very difficult to solve directly in the body fixed frame.
For $\boldsymbol{\tau}=0$ we can solve the Euler equations:

$$
\begin{aligned}
& \frac{d \mathbf{L}}{d t}=0=I_{1} \dot{\tilde{\omega}}_{1} \hat{\mathbf{e}}_{1}+I_{2} \dot{\tilde{\omega}}_{2} \hat{\mathbf{e}}_{2}+I_{3} \dot{\tilde{\omega}}_{3} \hat{\mathbf{e}}_{3}+ \\
& \quad \tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right) \hat{\mathbf{e}}_{1}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right) \hat{\mathbf{e}}_{2}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{1}\right) \hat{\mathbf{e}}_{3} \\
& I_{1} \dot{\tilde{\omega}}_{1}+\tilde{\omega}_{2} \tilde{\omega}_{3}\left(I_{3}-I_{2}\right)=0 \quad \text { Want to determine } \\
& I_{2} \dot{\tilde{\omega}}_{2}+\tilde{\omega}_{3} \tilde{\omega}_{1}\left(I_{1}-I_{3}\right)=0 \quad \text { angular velocities } \omega_{i}(t) \\
& I_{3 / 21 / 20 z 3}+\dot{\tilde{\omega}}_{1}+\tilde{\omega}_{1} \tilde{\omega}_{2}\left(I_{2}-I_{\text {Pl }}\right)=0
\end{aligned}
$$

Transformation between body-fixed and inertial coordinate systems - Euler angles

Comment - Since this is an old and intriguing subject, there are a lot of terminologies and conventions, not all of which are compatible. We are following the convention found in your textbook mechanics texts and NOT the convention found in most quantum mechanics texts. Euler's main point is that any rotation can be described by 3 successive rotations about 3 different (not necessarily orthogonal) axes. In this case, one is along the inertial z axis and another is along the body fixed 3 axis. The middle rotation is along an intermediate n axis.

From section 13.13 of Cline

$$
\tilde{\boldsymbol{\omega}}=\dot{\phi} \hat{\mathbf{z}}+\dot{\theta} \hat{\mathbf{n}}+\dot{\psi} \hat{\mathbf{e}}_{3}
$$

Need to express all components in body-fixed frame:

$$
\tilde{\boldsymbol{\omega}}=\tilde{\omega}_{1} \hat{\mathbf{e}}_{1}+\tilde{\omega}_{2} \hat{\mathbf{e}}_{2}+\tilde{\omega}_{3} \hat{\mathbf{e}}_{3}
$$

Euler's idea:

Rotational kinetic energy

$$
\begin{aligned}
T(\phi, \theta, \psi, \dot{\phi}, \dot{\theta}, \dot{\psi}) & =\frac{1}{2} I_{1} \tilde{\omega}_{1}^{2}+\frac{1}{2} I_{2} \tilde{\omega}_{2}^{2}+\frac{1}{2} I_{3} \tilde{\omega}_{3}^{2} \\
& =\frac{1}{2} I_{1}[\dot{\phi}(\sin \theta \sin \psi)+\dot{\theta} \cos \psi]^{2} \\
& +\frac{1}{2} I_{2}[\dot{\phi}(\sin \theta \cos \psi)-\dot{\theta} \sin \psi]^{2} \\
& +\frac{1}{2} I_{3}[\dot{\phi} \cos \theta+\dot{\psi}]^{2}
\end{aligned}
$$

If $I_{1}=I_{2}$:
$T(\phi, \theta, \psi, \dot{\phi}, \dot{\theta}, \dot{\psi})=\frac{1}{2} I_{1}\left[\dot{\phi}^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right]+\frac{1}{2} I_{3}[\dot{\phi} \cos \theta+\dot{\psi}]^{2}$

Recap --

Transformation between body-fixed and inertial coordinate systems - Euler angles

Motion of a symmetric top under the influence of the torque of gravity:

Lagrangian

$$
\begin{gathered}
L(\phi, \theta, \psi, \dot{\phi}, \dot{\theta}, \dot{\psi})=\frac{1}{2} I_{1}\left[\dot{\phi}^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right]+\frac{1}{2} I_{3}[\dot{\phi} \cos \theta+\dot{\psi}]^{2} \\
-M g h \cos \theta
\end{gathered}
$$

http://www.physics.usyd.edu.au/~cross/SPINNING\%20TOPS.htm

Home > American Journal of Physics > Volume 81, Issue 4 > 10.1119/1.4776195

See also --

. Full . Published Online: 18 March 2013 Accepted: December 2012

The rise and fall of spinning tops

American Journal of Physics 81, 280 (2013); https://doi.org/10.1119/1.4776195

