PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion for Lecture 16 — Chap. 4 (F & W)

Analysis of motion near equilibrium —
Normal Mode Analysis
1. Normal modes of vibration for simple systems
2. Some concepts of linear algebra

3. Normal modes of vibration for more complicated
systems
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PHysIcs

THURSDAY

CoLLoQuiuM .
OcTOBER 5TH, 2023

Adaptive Optics and Interference Theory Enable Measurement of
Retinal Function

Imaging of the retina has long been part of an ophthalmic exam, but
the optics of the eye have aberrations that limit the quality of those
images. Using adaptive optics, a technique originating in astronomy,
researchers can measure and correct for the eye’s optical
aberrations thereby enabling diffraction limited imaging of the living
retina. With this technology, individual photoreceptors and other
retinal cells can be visualized noninvasively in the living human eye.
My talk will provide an overview of adaptive optics imaging and will
discuss how adaptive optics in combination with interference of
light waves allows assessments of photoreceptor function.

4 pm - Olin 101
Refreshments will be served in the Olin

lobby beginning at 3:30 pm
Jessica I. W. Morgan,
Ph.D.

Associate Professor of Ophthalmology

WAKE FOREST Scheie Eye Institute

UNIVERSITY University of Pennsylvania
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Date F&W Topic HW
1 |Mon, 8/28/2023 Introduction and overview #1
2 |Wed, 8/30/2023 |Chap. 3(17) |Calculus of variation #2
3 |Fri, 9/01/2023 ||Chap. 3(17) |Calculus of variation #3
4 Mon, 9/04/2023 |Chap. 3 Lagrangian equations of motion #4
9 |Wed, 9/06/2023 |Chap. 3 & 6 |Lagrangian equations of motion #5
6 |Fri, 9/08/2023 ||Chap. 3 & 6 |Lagrangian equations of motion H#6
7 |Mon, 9/11/2023 |Chap. 3 & 6 |Lagrangian to Hamiltonian formalism #7
8 |Wed, 9/13/2023 |Chap. 3 & 6 |Phase space
9 [Fri, 9/15/2023 |Chap. 3 & 6 |Canonical Transformations #8
10 Mon, 9/18/2023 |Chap. 5 Dynamics of rigid bodies #9
11 Wed, 9/20/2023 |Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/22/2023 |Chap. 5 Dynamics of rigid bodies #11
13 Mon, 9/25/2023 |Chap. 1 Scattering analysis #12
14 Wed, 9/27/2023 |Chap. 1 Scattering analysis #13
15 |Fri, 9/29/2023  |Chap. 1 Scattering analysis #14
16 Mon, 10/2/2023 |Chap. 4 Small oscillations near equilibrium

‘17 Wed, 10/4/2023 |Chap. 4 Normal mode analysis Mid term start

18 |Fri, 10/6/2023 |Chap. 4 Normal mode analysis
22 Mon, 10/9/2023 |Chap. 7 Normal modes of continuous string
20 |Wed, 10/11/2023 Review and summary Mid term due

Fri, 10/13/2023 |Fall Break

10/04/2023
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Presenter Notes
Presentation Notes
We are starting the material covered in Chap. 4.    


From last time — example of system near equilibrium

Coupled oscillators --
Example — linear molecule

10/04/2023 PHY 711 Fall 2023 -- Lecture 17



®
Analysis using linear algebra methods

General matrix form:

( Ky —Ki, 0 ) /Yla\ /Ya\

1

\®)

a | _ a
—Ki, 2K22 —K>; Yz =, Yz

\ 0 Ky Kz \Y3a) \Y3a)
for m =m, =m, andm, =m,. (CO,)
( Koo ~Koc 0 ) (Yla\ (v
—Koc 2KCC —Koc Yza — a)é Yy

\ 0 ~Koc Koo ) KY;{) KY;)



Presenter Notes
Presentation Notes
More details for our case.


Finding eigenvalues/eigenvectors by hand --

Mya :/Iaya
[M — /I“I)y“ =0

M - A°1

= det (M — /1“1) =0 = polynomial for solutions A°

For each  and 1“ solve for the eigenvector coefficients y“

Example
(4 J4B 0
M=| V4B 2B —J4B
0 V4B 4
A-2* —JAB
M- Al =|J4AB 2B-A°

0

—J4B

\

J
0

—JA4B

A-17

=2“(A" - 4)(A“ - (4+2B))=0



Example -- continued

(4 4B 0
M=|-J4B 2B —J4B
JAB 4

A-2¢ —JAB

M- A“l|=|-~4B 2B-A"
0 —J4B

0

—J4B

A-1°

=27 (A" - 4)(2°

Solving for eigenvector corresponding to A = A' =0

A
— AB
0

— AB

0

yg)l
2B —JAB || y. |=0
~J4B 4 Yo

N J’%1 _ ylolz
Ye Ve

—(4+2B))

X

Note that the normalization of the eigenvector is arbitrary.



Digression on matrices -- continued

Eigenvalues of a matrix are “invariant” under a similarity
transformation

Eigenvalue properties of matrix: My,=A41)y,

Transformed matrix: M'y' =A4"y',
If M'=SMS™ then A' =1 andS7y' =y,
Proof SMS'y =AY

M(S7y',) =4 (S7y")

This means that if a matrix is “similar” to a Hermitian matrix,
it has the same eigenvalues. The corresponding
eigenvectors of M and M’ are not the same but 'y, =S"'y'



Example of a similarity transformation:

Original problem written in eigenvalue form:

kim — —k/m, 0 X/ X/
~k/m, 2kim, —kim, | X{|=0| X
0 —k/m, kim, )| X] Xy
Jm 00
Let S=| 0 Jm, 0 |; SMS”'=
0 0 m,
Let Y=SX
Kn  —Kp 0 Y1a Yla
—K, 2k, —Kyl| Y, |= a)i Yy
0 —xy &y )\ Y v’
k
where «, =k, =

10/04/2023

1/I’I’ll.l’l’lj

Note that this
matrix is not
symmetric

K —K, 0

—K 2K22 —Ky;

0 —Ky; Kis

Note that this

matrix is

symmetric
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Note, here we have defined S as a transformation
matrix (often called a similarity transformation matrix)

Sometimes, the similarity transformation 1s also unitary so that
Uu'=U"
Example for 2x2 case --

U_(cosﬁ sin@j UI_UH_(COSQ —sinH]

—sin@ cosé sin@d cos@

How can you find a unitary transformation that also
diagonalizes a matrix?

A B A 0
Example -- M= M'=
B C 0 A



Example -- MZ[A Bj M':(ﬂ‘ O]

B C 0 A4,
i cosf sind
M'=UMU for U = ,
—sinéf cosd

M- Acos’ @+ Csin® @+ Bsin20 —Bcos20—1(C— A)sin 26
~Bcos20—-L1(C—A4)sin260 Asin” @+ C cos’ 6 — Bsin20

2

C-4
= A, = Acos’ 6+ Csin® 0 + Bsin260
= A, = Asin” @+ C cos” § — Bsin20

— choose €= %tan‘1 (_2—B)

Note that this “trick” is special for 2x2 matrices, but numerical
extensions based on the trick are possible.



Note that transformations using unitary matrices are often
convenient and they can be easily constructed from the
eigenvalues of a matrix.

Suppose you have an N x N matrix M and find all N eigenvalues/vectors:

My“ = A1%y® orthonormalized so that <y“

y’)

:5a,8

Now construct an N x N matrix U by listing the eigenvector columns:

|
Vi

|
)

-
Il

1

Also by construction U 'MU =

YN

2
Vi
Vs

2
VN

»
Vs

yu

U—l

1 1
Vi )
2% 2%
Vi )

A e
A0

0 A

0 O

1*
Y

N*
Y

N*
YN

= by construction U'U =1



®)

Consider an extended system of masses and springs:

xl._l X. xi+1

Note : each mass coordinate 1s measured relative

to its equilibrium position x;

L—T—V—lmixz—lki(x — X )2
2 = i 2 — i+1 ]
Note: In fact, we have N masses; x, andx, _,

will be treated using boundary conditions.
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Presenter Notes
Presentation Notes
Example of one dimensional system with fixed boundary values.


LZT—V:lmZN:xlg_lki(’xiﬂ_xi )2
2 i=1 2 i=0

x,=0 and x,,, =0

From Euler - Lagrange equations :
mx, = k(x2 — 2x1)
mx, = k(x3 —2x, + X1)


Presenter Notes
Presentation Notes
Review of detailed equations.


Matrix formulation --

Assume x,(1)=X.e

(X, (2 -1 0 - 0) X, )
X, -1 2 -1 - 0] X,
m 5| . L . .
— o= . .
k
X, e =12 =1 || Xy
Ay ) G 00 ST 20Xy

Can solve as an eigenvalue problem —

(Why did we not have to transform the equations as
we did in the previous example?)



Because of its very regular form, this example also has an
algebraic solution --

From Euler - Lagrange equations :

mx; =k( —2x; + X, ) with x, =0=1x,,,

_ Here “a” is the equilibrium length
. _ lot+igaj
Try: X (1) = Ae of a spring and q has the units of

1/length.

]+1

. 2Ae—za)t+zqa] — _(elqa _2_|_e—zqa )Ae—za)tﬂqa]
m
, k
~ 0" =—(2cos(qa)-2)
m
. -
4k (qaj Is this treatment cheating”
= ®° =—3sIn a. Yes.
m 2 b. No cheating, but we

are not done.
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From Euler - Lagrange equations - - continued :
mx; = k(

]+1—2x +X; ) withx, =0=x,,

o 4
Try: x;(t)=Ade"™" :a)z——ksm (qaj
m 2

o 4k
Note that: x,(¢) = Be™ " — »° =——sin (q j
m

General solution :
X, (f) = 93( Lo iorias | g e—ia)t—iqaj)
Impose boundary conditions :
x, (1) = %(Ae + Be""”) 0
Xy (£) = ER( Jpiotiqa(N+1) | Be—ia)t—iqa(NH))

0


Presenter Notes
Presentation Notes
Boundary conditions.


Impose boundary conditions -- continued:
x,(1) = R(Ae”™ +Be™™ ) =0
Xy, () =R (Ae_iniqa(NH) + Be_m_iqa(NH)) =0
—> B=-4
Xy, ()=NR (Ae_i I (eiqa(NH) _ eV )) =0
= sin(qa(N + 1)) =0
= qa(N+1)=vz where v=12---N

_ \ /(4
N +1

qa



Recap - - solution for integer parameter v

x.(t) =NR| 2ide”" sin( Y J
’ N +1

2 4k ) | /4
O =—S1n
Y m (AN+QJ

Note that non - trivial, unique values are
v=12,---N



Presenter Notes
Presentation Notes
Full solution.


m | 2.(\N+.1

Examples , — ﬁsin J

tmasses’ ) =6
12 ¢ 20masses’ * 1 N=20
sin(x/2) -
1L .
W, o
4k / m 08 L o = “ @
A2
o
06 | &
>
04 F @
o
>
02 |} O]
o
]
G 'l 'l ] 'l 'l 'l
0 0.5 1 15 2 25 3
qa

Note that solution form remains carrect for N 2«

w(qa) =4k / m|sin 94
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Presenter Notes
Presentation Notes
Plot for example.    Now consider the case where N is very large.


For extended (infinite) chain without boundaries:

From Euler-Lagrange equatlons

mi, = k( X =2, + X,-_l) for all x, Note that we
rorrica are assuming
Try:  x,(#)=de that all masses
ik N and springs are
~o e :;(eq ~2+e™) 4™ jdentical here.

.k Here “a” is the equilibrium
0 = ;(2005(‘1“) _2) length of a spring and q has
( the units of 1/length.

4k a y
= o’ = gin®| 4 distinct values for 0 <ga <7

m 2
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Presenter Notes
Presentation Notes
Now consider the case where N is infinite so that there are an infinite number of solutions parameterized by qa as a continuous variable.


Plot of distinct values of o (q)

0.8-

®, 0.6

4k | m
0.4

0.2

0

0 1 qa 2 3 .

Note that for N> «© , g becomes a continuous variable
within the range 0 <ga< =
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Presenter Notes
Presentation Notes
Distinct solutions occur for  qa in the range of 0-pi as shown in the plot.       


For extended (infinite) chain without boundaries:

k k k k
wja\jw W,Qw/
X1 X Xisl

From Euler-Lagrange equations:

m)'c'j:k(xj+1—2xj+xj_1) for all x, Try:  x,(t) = Ae” ™
U . o k
2 —iwt+iga iqa —iqa —iwt+iga 2
—w Ae” T = —(e" =2+ e ) AeT Y —w =—|(2cos(ga)—2
~ ) —(2¢05(qa)-2)
4k | . _y
== hid sm(%)‘ distinct values for 0<ga <7«
m

Note that there are an infinite number of normal mode frequencies!
Does this make sense?
(A) Yes (B) No
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Consider an infinite system of masses and springs now
with two kinds of masses:

1@ @@ i@
xi yi xi+1 yi+1 xi+2
Note: each mass coordinate 1s measured relative

to its equilibrium position x; =0, y, =0,---

L=T-V
:%mﬁ(}:xf —I—%M%j@z _%kg(xm — Vi )2 _%kg(yi — X )2
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L=T-V

— %mi;’cf +%Mij/i2 —%ki(xm —y, )2 —%kZ(yi — X, )2
i=0 i=0 i=0 '
Euler - Lagrange equations :

mx; = k(yj_l —2x, +yj)
My, = k(xj —2y, +xj+1)

J

Trial solution : Note that 2ga is an unknown

X; (t)= Ae "% parameter.

y ( ): Bo-ieri2a Does this form seem
J reasonable?

ma” —2k k(e‘izqa +1) [Aj 0
k(e +1) Mao* -2k \B)™



Comment on notation --

1010000

l l

Trial solution:

. —iwt+i2qaj
X; (t) = Ae

yj (t) — Be—ia)t+i2qaj

yH—l i+

Using 2qa as our
unknown parameter is a
convenient choice so that
we can easily relate our
solution to the m=M
case.
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me” —2k k(e‘izq" + 1) (Aj 0o
kle> +1) Me* -2k \B)

Solutions :

w+2_k ko[ d 1+2cos(2qa)

- mM m’ M2 mM

: . : . . .
0 02 0.4 0.6 0.8
gﬂ
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Next time —
1. Extension of these ideas to 2 and 3

dimensions
2. Extension of these ideas to continuous

elastic media.
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