PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Discussion on Lecture 19 — Chap. 7 (F&W)

Solutions of differential equations
1. The wave equation — traveling wave solutions
2. The wave equation — standing wave solutions

3. The Sturm-Liouville equation

Mid-term exams will be returned at the end of class.
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Presenter Notes
Presentation Notes
In this lecture, we follow the textbook to use the example of the one-dimensional wave equation to discuss ordinary differential equations more generally and develop some solution methods.


— -

14 Wed, 9/27/2023 Chap. 1

Scafttering analysis

i
w

15 [Fri, 9/29/2023 Chap. 1 Scaftering analysis #14
16 Mon, 10/2/2023 |Chap. 4 Small oscillations near equilibrium
17 Wed, 10/4/2023 |Chap. 4 Normal mode analysis Mid term start
18 |Fri, 10/6/2023 Chap. 4 Normal mode analysis
22 Mon, 10/9/2023 |Chap.7 Normal modes of continuous string
20 Wed, 10/11/2023 Review and summary Mid term due
Fri, 10/13/2023 Fall Break

» 21 Mon, 10/16/2023 |Chap. 7 The wave and other partial differential equations #15
22 Wed, 10/18/2023
23 |Fri, 10/20/2023
24 Mon, 10/23/2023
25 Wed, 10/25/2023
26 Fri, 10/27/2023
27 Mon, 10/30/2023

10/16/2023 PHY 711 Fall 2023 -- Lecture 21 2



Presenter Notes
Presentation Notes
Expected schedule for the next weeks…


PHY 711 — Assignment #15
Assigned: 10/16,/2023 Due: 10/23/2023 10/03,/2022
Continue reading Chapter 7 in Fetter and Walecka.

1. Consider a one-dimensional traveling wave characterized by displacement gz, t) as a function
of position x for —oc < & < oo and time ¢ for ) < t < oo, is described by the wave equation:

P i _

ot Ox?
where ¢ denotes the wave speed. Find the functional form for the traveling wave p(x,t) for
each of these initial conditions,

0, (1)

(a) At t =0,
A | Op(x,0)
piw, 0) = cosh(x) and ot 0, 2)
where A is a given wave amplitude.
(b) At t =0,

du(x,0)  Asinh(x)

x,0) =0 and : ’
p(x, 0) e ot [-;[)511‘3(:1:)

where A is a given wave speed amplitude.
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Presenter Notes
Presentation Notes
This homework can most easily be done using D’Alembert’s approach.


PHysics AND CHEMISTRY

THURSDAY

JoInT CoLLoQuiuM .
OcToBER 19TH, 2023

Molecular Photovoltaics and the Advent of Perovskite Solar
Cells

Photovoltaic cells using molecular dyes, semiconductor quantum
dots or perovskite pigments as light harvesters have emerged as
credible contenders to conventional devices. Dye sensitized solar
cells (DSCs) use a three-dimensional nanostructured junction for
photovoltaic electricity production and currently reach a power
conversion efficiency (PCE) of 15.2 % in full sunlight and over 30 % in
ambient light. They possess unique practical advantages in terms of
particularly high effective electricity production from ambient light,
ease of manufacturing, flexibility and transparency, bifacial light
harvesting, and aesthetic appeal, which have fostered large scale
industrial production and commercial applications. They served as a
launch pad for perovskite solar cells (PSCs) which are presently
being intensively investigated as one of the most promising future
PV technologies, the PCE of solution processed laboratory cells .
having currently reached 25.7%. Present research focuses on their M]Ch ael Gratzel
scale up to as well as ascertaining their long-term operational EPFL
stability. This lecture will cover the most recent findings in these )

Switzerland

revolutionary photovoltaic domains.

Note that lecture location is in

Salem Ha” 9 4 pm - Salem 012
10/16/2023 PHY 711 Fall 2023 -- Lﬁg%gﬁrgénts served prior to seminar



Reminder -- this is a good time to be choosing your
project topics —

Project

The purpose of this assignment is to provide an opportunity for you to study a topic of your choice in greater depth. The
general guideline for your choice of project is that it should have something to do with classical mechanics, and there
should be some degree of of analytic or numerical computation associated with the project. The completed project will
include a short write-up and a presentation to the class. You may design your own project or use one of the following list
(which will be updated throughout the term).

e Explain the details of a homework problem that was assigned or one you design, including the basic principles and the
solution methods and results.

* Consider a scattering experiment in which you specify the spherically symetric interaction potential V(r). Write a
computer program (using your favorite language) to evaluate the scattering cross section for your system. (Depending on
your choice, you may wish to present your results either in the the center-of-mass or lab frames of reference.)

e Consider the Foucoult Pendulum. Analyze the equations of motion including both the horizontal and vertical motions.
You can either solve the equations exactly or use perturbation theory. Compare the effects of the vertical motion to the
effects of air friction.

e Consider a model system of 2 or more interacting particles with appropriate initial conditions, using numerical methods
to find out how the system evolves in time and space. For few particles and special initial conditions this approach can be
used to explore orbital mechanics. For many particles and random initial conditions, this approach can be used to explore
statistical mechanics via molecular dynamics simulations.

e Examine the normal modes of vibration for a model system with 3 or more masses in 2 or 3 dimensions.

e Analvze the soliton eauations beyond what was covered in class.
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One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

Traveling wave solutions thanks to D’Alembert --

For the displacement function, u(x,?), the wave equation has the form:

2 2

g 'g —c’ g ’Lzl =0
ot Ox

Note that for any function f(g) or g(q) :
ux,t) = f(x—ct)+ g(x+ct)

satisfies the wave equation.



Presenter Notes
Presentation Notes
Review of wave equation.


Initial value traveling wave solutions u(x,?) to the wave equation;

attributed to D'Alembert: These functions

lWOUId be given

where u(x,0) = ¢(x) and %(x, O)\zw(x)

2 2
g ’f —c’ g ’l; 0
ot Ox
Assume:
ux,t) = f(x—ct)+g(x+ct)
then: u(x,0)=p(x) = f(x)+g(x)

o, o (dft)dgl)
S50) =y (x) = c[ " dxj

= £~ g(0) = [y
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Presenter Notes
Presentation Notes
This method by D’Alembert is based on the special property of the wave equation.


Solution - - continued : ux,t)=f(x—ct)+g(x+ct)

then: u(x0)=¢(x)=f(x)+g(x)

% 00) = () = L0 )

= f(0)-g(x) = j p (x')dx

For each x, find f(x)and g(x):

()= %[qﬁ(x) —%fw(x')dx']
200 =1 900+ [y ()
2 C

= u(x,t) = %(¢(x —ct)+¢(x+ ct))+ 2%} jw(x')dx'


Presenter Notes
Presentation Notes
D’Alembert’s method continued.


Checking that D'Alembert's solution solves the wave equation:

2 2
0’ 1 2 » 0" _0
ot’ Ox”
1 1 x+ct
u(x,t) = (gp(x ct)+(p(x+ct))+2— j y(x)dx'
WD - (g —ct) + @' r+c0) 45— (r—c) +y(x+en)
2
T _ Lo cty+ 9"+ ct)) + ——(p (e —ct) + (5 + )
8)(? 2 2c
LD _ C(p(xmer) + g (x+e)) 4y ct) + y (x-+)
2 2 ’
: i’;ﬁf’t) = CZ ((/)"(x—ct)+¢"(x+ct))+§_c(%”'(x—ct)+W'(X+Cf))
Here we have assumed that ¢(uz) and w(u) are continuous functions and
do(u d”p(u
=LY, =2, e

du



Example:

=0.
2.
2

) 2

-4 -2 (
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Presenter Notes
Presentation Notes
An example.    (Use slide show to see animation.)


%Xample ;

2
aél 2 T4 =0 where u(x,0)=0 and a'u(xO)—_ﬁe—xz/az
Ot Ox2 =
o ey = (et o)
2c
Note that >y — _LZ((X-F ct)e—(x+cz)2 LA (x ct) (et} /az)
ot o
t=0.
1-
0.5
_iﬁl — !5 ] a T é I N io
-0.5-
_1_'
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Presenter Notes
Presentation Notes
Another example.   Use slide show to see animation.


Other types of solutions to the wave equation:

2 2
OU_ 20H_

ot* Ox”

Note that because of the way that the equation 1s written,

it 1s possible to find "separable" solutions of the form

p(x,1) = X(x)I'(2)
or more generally, a linear combination of separable solutions:

u(x,0) =Y X, (0T, (1)



Separable solutions to the wave equation:
2 2
g ,;1_626 ’l;=0 for u(x,t)=X(x)T(¢)
ot Ox
1 d°X(x) 1 d°T@)
X(x) dx’° c’T(t) dt?

For example, suppose the time function 1s harmonic in time with

frequency w: T(¢)=cos(wt+1n)
Then the spacial function must statisfy the ordinary differential equation:

d’ X (x) 0’
dx’ N _C_ZX(X)

= X(x)=Asin(kx+v) where k= @
C



It is often the case, there are boundary values specified for
X(x).

For example, suppose X(0)=0and X(a) =0 —-—

Asin(kx)| =0 Asm(kx)| =0
:k:@ forn=0,1,2,.....
a
= X (x) = Asin(@j and o = 22C
a a



niwx nict

Standing wave --  1(x,t) = Asin| —— |COS
A A
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How are the traveling wave and standing wave solutions to
the wave equations related?

A. They are exactly the same

B. They are not related
C. 777



B
The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2 2
af—czaé’zo Whereczzi
ot Ox o

Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

2
o) TAED 2 o) D syt =0
Factoring time and spatial variables:

u(x,t)=¢(x) cos(wt + )
Sturm-Liouville equation for spatial function @(x):

_ d_(fm v (x)j FY(0)P() = O’ ()P(x)
X dx



Presenter Notes
Presentation Notes
Generalization of the wave equation.   Equations in this class are separable in the time variables and the spatial variable satisfies  a generalized eigenvalue problem of this form.


Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Presenter Notes
Presentation Notes
We will sometimes want to generalize even further with an “inhomogeneous” term such as an applied force.


Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x)— Aa(x)) p(x)=0

dx X

Bessel functions: 0<x <

T(x)=—x v(ix)=x o(x)= 1 A=v: p(x)=J,(x)
X

Legendre functions: —-1<x<1
T(x)z—(l—xz) v(x)=0 o(x)=1 A=I(l+1) ¢@(x)=PB(x)
Fourier functions: 0<x<1

r(x)=1 v(x)=0 o(x)=1 A=n'm" @(x)=sin(nrx)


Presenter Notes
Presentation Notes
For now, we will focus on eigenvalues of the homogeneous equations.


Solution methods of Sturm-Liouville equations
(assume all functions a(wd gonstagts are real):

Homogenous problem: | ——7(x)—+v(x)— /Ia(x)j% (x)=0
dx dx

Inhomogenous problem : (— 4 7(x) 4 +v(x)— /Ia(x)j¢(x) = F(x)
dx dx

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0_N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

J(X)Z ﬁa(x])vﬁq(x') _ 5(x—x')

n



Presenter Notes
Presentation Notes
The eigenfunctions of these equations have very useful properties such as completeness.


Why all of the fuss about eigenvalues and eigenvectors?

d.

b.
C.

They are sometimes useful in finding solutions to
differential equations

Not all eigenfunctions have analytic forms.

It is possible to solve a differential equation without
the use of eigenfunctions.

. Eigenfunctions have some useful properties.



®
Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(X)%w(X)jﬂ(X)—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j=(zn = 3,) o) £,(0) £, ()


Presenter Notes
Presentation Notes
Orthogonality of eigenfunctions.


®
Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn (x)fm (X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (%)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

4+

Vanishes for various boundary conditions
at x=a and x=b
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Presenter Notes
Presentation Notes
Orthogonality continued.


Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1


Presenter Notes
Presentation Notes
Orthogonality continued.


~ Comment on “‘completeness”

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f (x)

h(x)= > C,f.(x),

where C :N% [ o (em £, ('

These ideas lead to the notion that the set of
eigenfunctions 7 (x) form a "~ "complete"” set in the sense
of ““spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o(x)y /» (xj)vﬂ () _ s(x—x).

n



Presenter Notes
Presentation Notes
Notion of completeness.


~ Comment on “completeness” -- continued
h(x)= Y C,f.(x),

where C = NL ["o (e £ ('

Consider the squared error of the expansion:

e = j dxa(x)(h(x) -yc, fn(x)]

2 e o
€~ can be minimized:

Oe’ ’

0= j dxo(x)[h(x)—gcnm)jfm(x)

m

=C = NLmj[dxa(x)h(x) f,(x)


Presenter Notes
Presentation Notes
Notion of completeness and practical applications.      Next time, we will extend this idea of completeness to develop important relationships.
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