PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 22 — Chap. 7 (F&W)

Sturm-Liouville equations

1. Eigenvalues and eigenfunctions
2. Rayleigh-Ritz approximation method

3. Green’s function solution methods based on
eigenfunction expansions

4. Green’s function solution methods based on
solutions of the homogeneous equations
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of one dimensional ordinary differential equations.


PHysics AND CHEMISTRY

THURSDAY

JoInT CoLLoQuiuM .
OcToBER 19TH, 2023

Molecular Photovoltaics and the Advent of Perovskite Solar
Cells

Photovoltaic cells using molecular dyes, semiconductor quantum
dots or perovskite pigments as light harvesters have emerged as
credible contenders to conventional devices. Dye sensitized solar
cells (DSCs) use a three-dimensional nanostructured junction for
photovoltaic electricity production and currently reach a power
conversion efficiency (PCE) of 15.2 % in full sunlight and over 30 % in
ambient light. They possess unique practical advantages in terms of
particularly high effective electricity production from ambient light,
ease of manufacturing, flexibility and transparency, bifacial light
harvesting, and aesthetic appeal, which have fostered large scale
industrial production and commercial applications. They served as a
launch pad for perovskite solar cells (PSCs) which are presently
being intensively investigated as one of the most promising future
PV technologies, the PCE of solution processed laboratory cells .
having currently reached 25.7%. Present research focuses on their M]Ch ael Gratzel
scale up to as well as ascertaining their long-term operational EPFL
stability. This lecture will cover the most recent findings in these )

Switzerland

revolutionary photovoltaic domains.

Note that lecture location is in

Salem Ha” 9 4 pm - Salem 012
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10 Mon, 9/18/2023 |Chap. 5 Dynamics of rigid bodies #9

11 |Wed, 9/20/2023 |Chap. 5 Dynamics of rigid bodies #10

12 |Fri, 9/22/2023 Chap. 5 Dynamics of rigid bodies #11

13 |Mon, 9/25/2023 |Chap. 1 Scattering analysis #12

14 |\Wed, 9/27/2023 |Chap. 1 Scattering analysis #13

15 |Fri, 9/29/2023 Chap. 1 Scattering analysis #14

16 Mon, 10/2/2023 |Chap. 4 Small oscillations near equilibrium

17 |Wed, 10/4/2023 |Chap. 4 Normal mode analysis Mid term start

18 |Fri, 10/6/2023 Chap. 4 Normal mode analysis

22 Mon, 10/9/2023 |Chap. 7 Normal modes of continuous string

20 Wed, 10/11/2023 Review and summary Mid term due
Fri, 10/13/2023 |Fall Break

21 |Mon, 10/16/2023 [Chap. 7 The wave and other partial differential equations [#15

22 Wed, 10/18/2023 |Chap. 7 Sturm-Liouville equations #16

23 |Fri, 10/20/2023

24 Mon, 10/23/2023

25 Wed, 10/25/2023

26 |Fri, 10/27/2023

27 Mon, 10/30/2023

28 Wed, 11/01/2023
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Presenter Notes
Presentation Notes
The schedule continues to cover material in Chap. 7


PHY 711 — Assignment #16
Assigned: 10/18/2023  Due: 10/23/2023
Continue reading Chapter 7 in Fetter and Walecka.

1. Consider the differential eigenvalue problem

d?

—wfn{rf:] = A\ fulx),
with boundary values f,(x =0) =0= f,(x = a).

(a) Find the first few eigenvalues ), and eigenfunctions f,(x).

(b) Consider a trial function
foialz) = z(a* — %)

to estimate the lowest eigenvalue of this system using the Rayleigh-Ritz method. How
well does it do?
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Review — Sturm-Liouville equations defined over a range of x.

Homogenous problem: (—i 7(X) 4 +v(x) - /Ia(x)j 0,(x)=0
dx dx
d d
Inhomogenous problem: (—d— 7(X) o +v(x) — /Ia(x)j o(x)=F(x)
X X

Eigenfunctions:

(‘difmi + v<x>)fn<x> = /,0(0),(x)
X dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.


Presenter Notes
Presentation Notes
Review of the class problems considered.


Eigenvalues and eigenfunctions of Sturm-Liouville equations
Inthe domain a<x<b:

(—irmi + v(x)jfnm = 4 o(x)f,(x)

dx dx
Alternative boundary conditions; 1. f, (a)= f, (b)=0
or 2. 7(x) (%) =7(X) 4 (%) =0
dx |, dx |,

or3. f (a)= . (b) and df,,(a) _df,(b)
Properties: dx dx

Figenvalues A are real

nm n?

Eigenfunctions are orthogonal: I b o(x)f (x)f (x)dx=06 N

where N, = [ o(x)(f, (x) dx.


Presenter Notes
Presentation Notes
General properties.


“Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the “exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

~S ~/

function ZO ) <%Zv AY ltlv> | S(x) = _%r(x)a+\/(x)
<h o h>

where #(x) is a variable function which satisfies the
correct boundary values. The ""proof" of this inequality is
based on the notion that#(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.


Presenter Notes
Presentation Notes
Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.


Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S()h(x) = 8(x)).C,f,(x) =D C,A,0(x)f,(x).
It follows that: ! !

(|S|i) = [ h(0)S()h(x)dx =Y C, P N,A,
It also follows that: ’

(h|o|i)= jj}?(x)a(x)ii(x)dx =Y, P N,

|37 dIC,[PN,4,

n

— = > A.
Wolh)  2ICEN, 7

n

Therefore g


Presenter Notes
Presentation Notes
Proof of the  Rayleigh-Ritz theorem.


Some additional comments -- <h|S|h>

h|S|h
< > :Zf/l wheref—zw‘;v andz =1

(ol
For the case of only two non-trivial eigenvalues:
(h|s|h)

~ :ﬁ)ﬂ,0+ﬁﬂl:/10+(ﬂ1—ﬁo)ﬂ
(hlo]h)

(is|)

el ]‘_, f

0 1
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Rayleigh-Ritz method of estimating the lowest eigenvalue
(h|S h?
A <AL
(hlo]h)
d2
Example: 3 f,(x)=Af (x) withf (0)=/f (a)=0
X
Exact eigenfunctions: /. (x)=sin (n_ﬂxj n=123....
a
2 2
Exact eigenvalues: A = (ﬂj n=1273.... 722 = 9'8696? 4404
a a a

Trial function  f;, (%) = x(x —a)

d
Raleigh-Ritz estimate: <X(a X)‘ dxz‘X(a X)>:10

<X(CZ—X)‘X(CZ—X)> Cl2



Presenter Notes
Presentation Notes
Review of example from last lecture.


0.8 f, exact
F 0.6

04 ftrial

0.2

02 04 06 08 1

10/18/2023
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.

Rayleigh-Ritz method of estimating the lowest eigenvalue

1< <h 5 h> Another example — this time
0~ </’1' o j;>’ with a variable parameter
o df,(x :
Example: ;( )+Gx f(x)=A4 f,(x) withf (—0)= f (0)=0
X
trial function f__ (x)=e®
S| f..
Raleigh-Ritz estimate: <fmal fmal> =g+ G i (€)
1.4 <f';rial o f';rial> 4g
/ltrial (g) d
1.2-
/ G ,
1.1-
1.0 ‘ —— — —
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator:
gOZEVG A (80) =N G Gmo o _2m, . _ho
7 )

trial ? 0
10/18/2023 PHY 711 Fall 2023-- Lecture 22 12


Presenter Notes
Presentation Notes
Another example.


Qeoap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

D L (=B f () withf (o) = f,(0) =0

2m  dx’ 2
Trial function £ (x) = e s
S| £ 2 2 2 /32
Raleigh-Ritz estimate: <fmal |fmal> = f g+ mo I =E;(8)
< trial G|f‘;rial> 2m 4g
1
g, :%w Eu(80) =2 he @ Exact answer

Do you think that there is a reason for getting the correct
answer from this method?

a. Chance only

b. Skill


Presenter Notes
Presentation Notes
In this case, the minimization process yield’s the exact answer.


.

Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:

(_im)_w(x) ﬂa(x)jeo(x) F(x)

dx dx
Green's function :

(—ir(x)—ﬂ(x} za(x)jG (x.x') = 5(x—x)

dx dx

Formal solution:

@, (x) = (010(\36) T .[Gﬁ (x,x")F(x")dx'

Solution to homogeneous problem


Presenter Notes
Presentation Notes
From a knowledge of the Green’s function we can find solutions of related inhomogeneous equations.


Formal solution:

0, (%) = 0,0 (X)+ | G, (x,x)F (x)dx’

Solution to homogeneous problem

What is the homogeneous equation psi_0(x)?

Homogenous problem:

(—iT(X)di +v(x) —/10(36))%0(36) =0

dx X

In this lecture, we will discuss several methods of
finding this Green’s function. This topic will also
appear in PHY 712



How do we arrive at the formal solution?

Formal solution:

0, (X) = 0,0 (X)+ [ G, (xr, x)F (x)dx’

Note that this form satisfies the inhomogenous equation

Define S(x)= _4 7(x) di +v(x)— Ao (x)

X X

()@, (X) = S(X),(x) + S(x) [ G(x, x)F (x')dx’

S(xX)p,(x) = 0 +J O(x—x"Y(x"dx'=F(x)



®
Using complete set of eigenfunctions to form Green'’s function --

Suppose that we can find a Green's function defined as follows:

(_L(x)—w(x) za(x)jG (6,2 =5 (x—x)

dx dx

Completeness of eigenfunctions:

Zf(x)f(x) 5(x x)

n

In terms of elgenfunctlons

(_if(x)_-FV(X) ﬂ,O'(x)jG (X X) (7 )Zﬁ’(xj)vfn(x')

Recall:

dx dx

n

=G, (x,x") = Z ﬁ?(x)f(_x; / N, By construction

10/18/2023 PHY 711 Fall 2023-- Lecture 22 17



Presenter Notes
Presentation Notes
The following slides present solution methods for differential equations involving the use of eigenvalues.


.

Example Sturm-Liouville problem:

Example: t(x)=1 ox)=1, v(x)=0;
A=1; F(x):FOsin(%j

Inhomogenous equation:

d’ [ 7mx
(_E — 1] ¢(x) = F,sin (Tj

10/18/2023 PHY 711 Fall 2023-- Lecture 22

a=0 and b=L

18


Presenter Notes
Presentation Notes
Example.


Eigenvalue equation :

(— j—jf (1) = A, f,(x)
X

Eigenfunctions Eigenvalues:

£(x) = %sin(%j j, = (T”j

Completeness of eigenfunctions:

o () T 6 (x-x)

n

: 2 . . !
In this example: — E sin| 222 sm(mm j:
L5 L L


Presenter Notes
Presentation Notes
Solution using eigenfunctions appropriate for this example.


: . . 2. . !
In reality, for finite summation ZZ sin (nTﬂxJ sin ( nrx j =0 ( X—X ')
n=1

L
x=1/2, L=1
100- |
80-
| N=100
60- o
40-
20
- : N=10
() rosane %*wwwu’ﬂwur - UU > wﬂ“ﬂuﬂwﬂ APt
- 0.2 0. \ ] 0.8 1
_20_ xp X’9
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Green's function :

(— a 7(x) a +v(x) — /la(x)le (x,x') = 5(x — x')
dx dx

Green's function for the example:

' sin(mj sin(nﬂx'
) = S LAY, 29\ L) AL
n no n (MJ _1


Presenter Notes
Presentation Notes
Continued.


.

Using Green's function to solve inhomogenous equation:

2
(_Z_ — lj @(x) = F,sin ( ij with boundary values ¢(0)=¢(L)=0
X

o(x) = ¢O(x)+jG(x X, sm(ﬂLx jdx'

nixx
sin(j / ' '
o) =0y (1) + 25 = [sin (ﬂ}ﬁ‘o sin (ﬂj dx’

HOE

L

P(x) = Py () + —2 sin(ﬂj


Presenter Notes
Presentation Notes
In this case, the solution simplifies.


Another method of constructing Green'’s functions -- using
two solutions to the homogeneous problem

Green's function :

(— a 7(x) a +v(x) — /la(x)le (x,x') = 5(x — x')
dx dx

Two homogeneous solutions

(_iz-(x)di+v(x)—/la(x)jgi(x):O for i=a,b

dx X

1

Let Gj, (x,x') — Wga ('x<)gb (x>)

where W = T(X')(ga (X')%gb (x) g, (X')%ga (X')j


Presenter Notes
Presentation Notes
Green’s function based on homogeneous solutions (not eigenfuntions).


@ome details:
For ¢ —>0:

TdX(—ir(x)i +v(x) - ﬁa(x))Gl (ox)= j 6dx5(x - x')
e dx x'—e€

dx

d d 1
dx| —1(x)— |—g.(x x,)=1
X'J:e ( dx ( )deWga( <)gb( >)

x'+e

_T(X) d B T(.X,") ,i . 'i |
W (dxga(x<)gb(x>)ﬂ T (ga(x)dxgb(x) gb(x)dxg“(x)j

x'—e€

:>W:T(X')(ga(x')%gb(x')_gb(x')%ga(x')j AW

Note -- W (Wronskian) 1s constant, since vl 0.
X

— Useful Green's function construction in one dimension:

1

Gxi(xﬂx') — Wga(x<)gb(x>)


Presenter Notes
Presentation Notes
Some details.     


dx dx

(—ir(x)—JrV(X) za(x)j P(x) = F(x)

Green's function solution:

0, (X) = 0,0 (0) + | G, (x, x)F (x)dx’

() + £ jg (O (' £ [P

Note that the integral has to be performed in two parts.
While the eigenfunction expansion method can be
generalized to 2 and 3 dimensions, this method only works

for one dimension.


Presenter Notes
Presentation Notes
More details.      


Example from previous discussion:

d’ TX
-——1|p(x)=F sm( 7 j with boundary values @(0)=¢(L)=0

Using: G(x,x')z%ga()@)gb()g) for  0<x<L

(_5_22 - ljgi (x)=0 = g,(x)=sin(x); g, (x)=sin(L-x);
dg,(x) . .. . B
(x)—=—==sin(L —x)cos(x)+sin(x)cos(L —x)

dx

a

W:gb(x)@;—i)c)—g

=sin(L)

P(x) = @y(x) + Sin.(L - x) Isin(X')Fo sin (ﬂj dx'
sin( L L

sm(x)
sin(L) <

Iy sin(ﬂj (Actually the algebra is painful).

_|_

Ism(L x")VF, sm( 7 jdx

- +
P(x) =@, (x) )2 1 L But, hurray! Same result as before.
e


Presenter Notes
Presentation Notes
Another method of finding a Green’s function.


Another example --

2
j_cp( x)=—p(x)/¢€ electrostatic potential for charge density p(x)
X

Homogeneous equation:

d2
d 2 gab('x) 0

Letg,()=x  g,(x)=]
Wronskian:

W =g, () e

QGreen's function:
G(x,x")=—x_

a’ga ) _

- g,(x)

O(x) = cp(x)+—jdx'x'p(x)+ jdx o(x)

€ %
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Presenter Notes
Presentation Notes
Another example, this time taken from electrostatics.


Example -- continued

d’ : : :
Ecp( x)=—p(x)/ €, electrostatic potential for charge density p(x)

cb(x)cho(x)+1jdx'x'p(x')+ijdx'p(x')
60 —00 60 X

(0 x<—a
Suppose p(x)=3p,x/a —-a<x<a
0 xX2>a
0 x<—a

o, [a xa* x
DO(x) =D, (x)++ 0( + — j —a<x<a

€a\ 3 2 6

2

— 0,4 xX2a
| 3¢,
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Presenter Notes
Presentation Notes
Solutions for a particular charge distribution.


D(x) =+

0 x<—a
po(cf rd —X3j —a<x<a
€al\ 3 2 6
2
gpoa Xz2a

2_

10/18/2023

_1_
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Presenter Notes
Presentation Notes
Plot of the change distribution and of the electrostatic potential.
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