PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 25: Chap. 7
& App. A-D (F&W)

Generalization of the one dimensional wave equation =
various mathematical problems and techniques including:
1. Complex variables
2. Contour integrals
3. Kramers-Kronig relationships
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10/25/2023

PHysics CoLLoQuium

Division of Labor and Mechanism of Translocation in
a Ring ATPase

Many transport processes in the cell are performed by a diverse
but structurally and functionally related family of proteins. These
proteins, which belong to the ASCE (Additional Strand,
Conserved E) superfamily of ATPases, often form mutimeric
rings. Despite their importance, a number of fundamental
questions remain as to the coordination of the various subunits
in these rings. Bacteriophage phi29 packages its 6.6 mm long
double-stranded DNA using a pentameric ring nano motor Using
optical tweezers, we find that this motor can work against loads
of up to ~55 picoNewtons on average, making it one of the
strongest molecular motors ever reported. Interestingly, the
packaging rate decreases as the prohead fills, indicating that an
internal pressure builds up due to DNA compression attaining
the value of ~3 MegaPascals at the end of packaging, a pressure
that is used as part of the mechanism of DNA injection in the next
infection cycle. We have used high-resolution optical tweezers to
show that the motor packages the DNA in alternating phases of
dwells and bursts. During the dwell the motor exchanges
nucleotide, whereas during the burst, the motor packages 10 bps
of DNA per cycle. We have also characterized the steps and
intersubunit coordination of this ATPase. By using
non-hydrolyzable ATP analogs and stabilizers of the ADP bound
to the motor, we establish where DNA binding, hydrolysis, and
phosphate and ADP release occur relative to translocation during
the motor's cycle. Surprisingly, a division of labor exists among
the subunits: while only 4 of the subunits translocate DNA, all 5
bind and hydrolyze ATP, suggesting that the fifth subunit fulfills a
regulatorv function. Furthermore. we show that the motor not
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PHY 711 — Homework # 19
Assigned: 10/25/2023  Due: 10/30/2023
Read Appendix A of Fetter and Walecka.

1. Assume that ¢ > 0 and b > 0; use contour integration methods to evaluate the
integral:

o0 eiam
[ dx.

oo T2+ b2

Note that you may use Maple, Mathematica, or other software to evaluate this
integral, but full credit will be earned by using the contour integration methods.
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Basic ideas of complex integration --

For an analytic function, its integral over a closed region in the

complex plane vanishes:

<j> f(z)dz =0

However, consider the integration of a function which has a pole --

Behavior of f(z) = Ln about the pointz =0

A
For an integer n, consider

S[) dz = J. ,Oen ZZ? I-n 2fei(1n)¢id¢:{ 0 n=#l
0

g 2ni n=1



Presenter Notes
Presentation Notes
Examples of non-analytic functions.    Special property of contour integrals about a function with a simple “pole”.


Behavior of f(z) = Ln about the point z =0

z
For an integer n, consider

<ﬁi g zj petidg _ ., T g { 0 n=l
o

g p”ein(é g 2ri n=1

This observation helps us to focus on a special kind

of singularity called a "pole"

For f(z) 1nthe vicinity of z = Z,: f(2)~ g(zp )
zZ—2z
p
Therefore: qu(z)dz =0 or (j)f(z)dz _ g(Zp)q.D dz  _ 2rig(z)
z-z,

Integration does Integration does
not include z, include z,



®
<ﬁ f(2)dz =27y Res(f(z,))
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Presenter Notes
Presentation Notes
Contributions to a closed contour from various contributions.


.

General formula for determining residue:

Res( f(z
Suppose that in the neighborhood of z |, f(z) » hz)  _ (f ( p))

N —

Z_Zp) z>z, Z_Zp

Since h(z) = (z -z, )m f(z) 1s analytic near z ,, we can make a Taylor exansion

m—1
| di(z))  (z-z,) d"'i(z,)
about z, : h(z)~ h(zp)—l—(z—zp)Tp—l—...—l— D) dz’"‘lp +....

d" z-z, mf(z) \
— Res(f(zp)) = hm< l (( ) )

S (m-1))! dz""!

In the following examples m=1


Presenter Notes
Presentation Notes
Residue theorem


Example: j j dx 4+ 0 _C_‘S
. ' 1+x 1+z*
1 Im(z)
I >
1+ 2 :(Z_em/4)(2_e3m/4)(z_e—m/4)(z_e—3m/4) Re(z)
Cj) lj; dz = 27zi(Res(zp = ei”/4)+ Res(zp = e3i”/4)) ,l;ﬁt?'
Res(z , = eim) = e:: Res(z = 63’”/ )=— -

e ) A )
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Presenter Notes
Presentation Notes
Example of a contour integral using the residue theorem.


.

Some details: : _
Note that: " =—-1=¢e""
2
z =3ix/4 __ in/d—inr __ ir/4
f(Z):1+Z4 e =e = —e

(eiﬁ/4 )2

_ irl4\ _
Res(f (z=e ) B ( o _ esmm)( o4 _ oIl )( o4 _ e—3m/4)

/2
B em

(eiﬁ/4 + e—iﬂ'/4 )(eiﬂ/4 . e—i;z/4 ) (eiﬂ'/4 + eiﬂ'/4 )

irr/4 ir/4
e e

2(i—(-1)) 4

Question — Could we have chosen the contour in the lower half
plane?
a. Yes b. No


Presenter Notes
Presentation Notes
Some details.


©  cos(ax)
Another example: 1 :0 4274 n 5232 n 1 dx

o0 ax 1az

©  cos(ax) ] e ] e
dx =— dx =— dz
I4x4+5x2+1 2j4x4+5x2+1 2<"54Z4+522+1

0 —00

4Z4+SZ2+1=4(Z—l')(Z—%)(Z+Z')(Z+%) N0t1e:
m-=

Im(z)

/= 27ri(Res(zp = i)+ReS(ZP :l))


Presenter Notes
Presentation Notes
Another example.


iaz

r 1
[ fos(“’? dy=—§———dz
Vaxt vs 41 27420 1527 41

=27zi(Res(zp = i) + ReS(Zp = é))

2%(—6_" -~ 26_“/2)

Question — Could we have chosen the contour in the lower half
plane?
a. Yes b. No

Note that fora >0 and z, >0

iaz iazp eaz]

in the lower half plane: e =e


Presenter Notes
Presentation Notes
Some details.


.

* xsin kx
Another example: I = jx2+a2 dc fork>0anda>0
( xsmkx 1% xe™ 1+ 2o
= ~dz
J-X +a l_"-xz ZCPZ +Cl
z°+a —( z—1ida (z+za)
tIm(z)
>
Re(z)

[= 27Z'i(RGS(Zp = ia)) _ ok
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Presenter Notes
Presentation Notes
Another example


Some details --

I xsmkx 15 xe™ 1 ¢ ze™
a2
oox +a’ 1Y X"+ 1 z°4+a
z* +a’ :( —za)(z+za)
| ze'™ | ze'™
—ﬁj) ——dz =2ri-lim| (z —ia)———
i Y 2P+ a’ | zia z* +a
1 ige™™ _
=27l — — e ™

I 2ia


Presenter Notes
Presentation Notes
More details.


From the Drude model of dielectric response --

2 o —ioT
@ e .
G(r)=—" | do———— where w,, @,, and y are positive constants
277 @y, —o" —iyw
Upper hemisphere:
,} Im(Z) 7= x4+ ly e—ia)r — e—ixr+yr

— Converges for 7 <0

e(z)

Lower hemisphere:
7/2 iot IXT— YT
2 z=x—-1y €  =e¢
V, =40 —— 4
0 0
4 = Converges for 7 >0
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From the Drude model of dielectric response -- continued --

2 —ioT

)
G(r)=—= [ do——=
27 w,—w

5 where w,, @,, and y are positive constants

— iy

0 for 7 <0

G(7) = a)ﬁ Ve SINVT

for >0

€

Vo


Presenter Notes
Presentation Notes
Another example from the Drude model.


Cauchy integral theorem for analytic function f(z):

L [ &)

2m1 Jo 2 — 2z

f(2)
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Presenter Notes
Presentation Notes
Another useful theorem from Cauchy.


)
Example

Suppose f(]z‘ —> oo) =0 and forz =x:
J(x) = a(x)+ib(x)

tIm(z)

il N

>

Re(z)
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Presenter Notes
Presentation Notes
Considering real and imaginary parts.


o Example -- continued

flz)= 1.§f (Z')dz' where f(x) = a(x)+ib(x)
2mY z'—

z
tIm(z)
Re(z)
a(x)+ib(x) =L a(x )+zb(x )dx' +0

* |
27Tl x'—x
—00
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Presenter Notes
Presentation Notes
Real and imaginary parts for Cauchy’s integral relation.


Example -- continued

t im(zZ)
X Re(2)

Tf(X') o= | S j /(x) dx.;f ()

!

dx'

X'—Xx xX'—X
&

o0

il

—Q0

J '(_x') dx'+irz [ (x)

X
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Presenter Notes
Presentation Notes
Detail of how to evaluate the point x=x’ in terms of the principal parts integral.


m(z’)
X Re(2)
let u=x'-x
let x> x+in .
O
xX+& x' & 1 &
[ G ~f(x)hm —du=f()lim [ X g,
h x'—x 77—)0 _”7 77—)0 u _|_77
=iz f(x)  since lim i ~imd(u)
10 1% +17°
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Presenter Notes
Presentation Notes
Some details.


More details -- n

Iim————~ 7o (u)
>0u” +n
100
SOI
60
40§
Jg
—I1 I—(IP.SI o 0 OIS 1
u
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Presenter Notes
Presentation Notes
Justification of the delta function result.


Example -- continued

jixm_jxx L] L) w+yf

X

—o0 X+&

:ij il dx'+iz f(x)
coX'=x

o) ib(e) = L AT o A (i)

2m 7 x'-x 27
P ¢ b(x' P ¢alx
= a(x)= _ __[ x'(i? dx' b(x)=— _ J j'(icx) dx'

Kramers-Kronig relationships


Presenter Notes
Presentation Notes
Final result relating real and imaginary parts of complex function.


.

Comment on evaluating principal parts integrals

a(x):f;]?b(x')dx': lim (lf (xv)d“; T b(x')dx')

x'—x e—>0 7Y x'—-x x'—x

—o0 —00 x+e

J

Y
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Presenter Notes
Presentation Notes
Some details.


Example:

b(x'):<

forx'<—-2L, —L<x'<L, x'>2L

for L<x'<?2L
for —-2L<x'<-L
,b(X)

-2L -L l

10/25/2023
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Presenter Notes
Presentation Notes
Simple example for complex function.


forx'<—-2L, —L<x'<L, x'>2L
b(x')=4 B, for L<x'<2L
—B, for —2L<x'<-L
P % b(x' im (1°Fb(x) . 1%b(x'
CI(X)Z ( )dxv: [ j ( )dxv_l_ J' ( )dX']
T x'—Xx e>0\ 77 x'-x T X=X

Forx<-2L or x>2L —-L<x<L:

~B ¢ dx' B ¢ dx'
a(x) = OI — + Oj '
T 5, X=X T 7 X=X
2 2
_ BOln x+L +&ln x—2L —&ln x2 4[2,
T x+2L T x—L T x =L



Presenter Notes
Presentation Notes
For given imaginary function, this is the form of the real function.
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Presenter Notes
Presentation Notes
Summary of results.


®
Summary

For a function f(x), analytic along the real line:

f(x)= m(f(X))+iS(f(X)) = a(x)+ib(x)

:a(x)zﬁTbgf')dx' b(x) —gT a(x')dx'

T x'—x xX'—Xx
Example:

1 X 1
f(x)=—— alx)=— b(x) =——

X+1 x +1 x°+1
Check:
I?
PG b(x' P % 1 '
[ (x)dx'z——j —dy'=—— =a(x)

TS X'—X ﬂ_w(x'—x)(x' +1) x°+1
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Presenter Notes
Presentation Notes
Summary.


a(w) = b(w) =

(0-10)" +1 (0-10)" +1
1_
0.5—_
0- |
15
—0.5-
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Continued:

b(x) ,\_ P} 1 .
;_'[Ox'—xdx B ﬂ;[o(x'—x)(x'2+1)dx

__Pq x —x" L Pr b
- 7r_'[o (x'x)(x'2+1)(x2+l)}dx (x2+1)7r'[ox—xdx

:T[(x'zfl;(z;ﬂ)J (¥ +1) I

Note that: j dx'zln(X—x)—ln(e):ln(X_xj
oox'-x €
j : dx'z—ln(—X—x)+ln(—e)=—ln(X+xj
X=X €

Ll dx'zlimln(X_szo fj L e

T x'-x Xoo \ X +x T x'

% b(x'
Ll (x)dx'z — =a(x)
T oXx'—Xx x +1
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