PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes for Lecture 29 --Chap.9IinF & W

More hydrodynamics

1. Newton’s laws for fluids and the continuity
equation

2. Approximate solutions in the linear limit

3. Linear sound waves
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of hydrodynamics which is presented in Chapter 9 of your textbook.   The focus will be on treating the equations in the linear regime.


21 Mon, 10/16/2023 |Chap. 7 The wave and other partial differential equations |#15
22 Wed, 10/18/2023 |Chap. 7 Sturm-Liouville equations #16
23 [Fri, 10/20/2023 |[Chap. 7 Sturm-Liouville equations #17
24 Mon, 10/23/2023 |(Chap. 7 Laplace transforms and complex functions #18
25 Wed, 10/25/2023 |Chap. 7 Complex integration #19
26 Fri, 10/27/2023 |Chap. 8 Wave motion in 2 dimensional membranes #20
27 Mon, 10/30/2023 |(Chap. 9 Motion in 3 dimensional ideal fluids #21
28 Wed, 11/01/2023 |(Chap. 9 Motion in 3 dimensional ideal fluids #22
29 Fri, 11/03/2023 |Chap. 9 Ideal gas fluids #23
31 Mon, 11/06/2023

32 Wed, 11/08/2023

33 [Fri, 11/10/2023

34 Mon, 11/13/2023

35 Wed, 11/15/2023

36 Fri, 11/17/2023

37 Mon, 11/20/2023

Wed, 11/22/2023 |Thanksgiving

11/3/2023
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Presenter Notes
Presentation Notes
Updated schedule


PHY 711 -- Assignment #23

Assigned: 11/03/2023 Due: 11/06/2023
Continue reading Chapter 9 in Fetter & Walecka.

1. In class, we derived an expression for the linearized differential equation describing density
fluctuations O p within an ideal gas under isentropic conditions, finding a wave equation.
Choose an ideal gas (such as air) and two different conditions of pressure, temperature, efc.
to estimate the wave speeds. cy.
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®
Recall the basic equations of hydrodynamics

Basic variables: Density po(r,?)
Velocity v(r,t)

~ Pressure p(r,t)
Newton-Euler equation of motion:
ov Vp
AL AR

. . O
Continuity equation: 8_p +V-(pv)=0
{
+ relationships among the variables due to principles of
thermodynamics due to the particular fluid (In fact, we
will focus on an ideal gas.)


Presenter Notes
Presentation Notes
Review of the basic equations of hydrodynamics.


Solution of Euler’s equation for fluids -- isentropic

%+V(§v2)—vx(va)=f oy ——

Additional relationships among the variables apply,
depending on the fluid material and on thermodynamics

At the moment we are interested in the case where there
IS N0 heat exchange.

A little thermodynamics
First law of thermodynamics: dE.  =dQ—dW
For 1sentropic conditions: dQ =0

dEint =—dW = _PdV Here W == work
V == volume



Solution of Euler’s equation for fluids — isentropic (continued)
dE._ =—dW =—pdV

, M
In terms of mass density: p = e
: M
For fixed M and variable V: dp=——dV
V
M
dv = —?dp Internal
In terms 1n intensive variables: Let E_ =M 5‘22?[%&
mMass

dE_ =Mde =—dW =—pdV =M§dp

dgz%dp (6—8j :%
0P )iy P



Solution of Euler’s equation for fluids — isentropic (continued)

P Note: Under conditions of constant

( _‘9 j _ i entropy, we assume e can be expressed
2 in terms of the density alone.
0P oo P g
0
. o
Consider: Ve = (— Vp = %Vp
P ) oo P

Rearranging : V(g + E] — vp
P P

Note that here we are assuming that we can
write ¢ as g(p,S).



Solution of Euler’s equation for fluids — isentropic (continued)

ov Vp
E‘FV( ) VX(VXV):fapplied _7
@=V[5+£j
P P
if Vxv=0 2> v=—VO f =-VU

applied

6(_v®)+v(%v2)= —VU—V(5+£j
Ot o,

—V g-|-p_|_U_|_ v _82 -0 For isentropic and
Jo, ot irrotational fluid.



Some details --

(Vxv)=0 ‘irrotational flow" —v=-VOD
Check: (Vxv)=—(VxVO)=
2 2
S i
Y 0yOz 0zOx

Summary: For isentropic and irrotational fluid with internal
energy per unit mass e:

V(5+p+U+ 1% —ai)j_o
o, ot

Here ¢ is the internal energy of the fluid per unit mass. For an
ideal gas fluid, it has a relatively simple form.



Internal energy for 1deal gas :

E-L NkT=Me o=l K op_JP
2 2 M, 2 p
: , C
In terms of specific heat ratio: y = C_p
)

dE = dQ —dW

~(2)-(5) -2
" \ar), \or), 2 M,

(2] 3] () -0

dr ), \oT oT 2 M, M,
¢, _ _%"‘1 S o1
¢ T ~ 2
4 2 7


Presenter Notes
Presentation Notes
Using the ideal gas law with f representing the degrees of freedom.       It is convenient to replace the f with the gamma factor which can be measured experimentally.


Digression
Internal energy for 1deal gas: f ="degrees of freedom"

EziNkT:Mg g:f K T:iﬁ

2 2 M, 2 p
LA PN /% N S
2 y-1 y—1 y—1M, y—1p
f Y
Spherical atom 3 1.66667
Diatomic molecule S 1.40000
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Internal energy for 1deal gas :

Fel NkT=Me e-— K1 P

y—1 y=1M, y-=lp

Internal energy for 1deal gas under 1sentropic conditions:

P P
de=—Lav-L 4
M p’ P



Presenter Notes
Presentation Notes
Using the ideal gas law under isentropic conditions to derive the speed of sound.


Back to analyzing the fluid mechanics equations

VI e+L P +U+L v _(L‘D —0 For isentropic and
Jo, Ot irrotational fluid.

Internal energy for ideal gas:

E=—t NkT=Ms g-— 2 p_ 1P
| y—1M, y—1p
1 )

V L 4 FU + 1y & =0
y=lp p ot

Also need to include continuity equation:

ap
V. ~0
— V- (ov)



B
Now consider the fluid to be air near equilibrium

Near equilibrium: P, represents the average air density

P =p,+op p, represents the average air pressure
pP=D,+Op (usually ~ 1 atmosphere)
v=0+0v=—-VoD v,=0 average velocity
fapplied — O
Y — 1 p P
0
PLv. ( pv) =0

ot


Presenter Notes
Presentation Notes
Now consider air as the fluid near equilibrium with small fluctuations represented by the delta notation


Linearized equations near equilibrium

8] ee b Gl e

ap
V. —0
~ tV-(pv)

Further relationships for 1sentropic 1deal gas

Y
p
P:Po(ﬁj |>_7/ V(ﬁjz 4 0(7/ D" *Vp
Po y—=1 \p) r-1lp

L =7 2o p2vp
Complete linearization £
7 Po V5p+a5v 0 @+pov-(5v)20

o Ot o/



Decoupling linearized equations --

4 p0 00V o0op

Voo+——=0 —+p,V-(0oVv)=0
o P> o P (6)
7p0v5p—a5p 0 SV =—VD
Po o
) )
V[)/pzo 5,0—8—):0 — 7/1920 5p—a—=constant
Po ot Po ot
7P 0%p 0@ _
p. Ot ot
2
7povzq)_8<21>zo
Po ot
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Have we seen these equations before?
0’5
yp() Vzé;[) 2[0 _ O
Po ot

2
ypO qu) 5 (21) — O
Po ot
It 1s also possible to show that
2
TPy, 0 52p:0
Po ot




For an 1deal gas under 1sentropic conditions with
irrotational flow, close to equilibrium, the linear
fluctuations in density, pressure, and velocity are

characterized by a wave equation with velocity

» YDy

c, = .

Lo




.
More general case -- Isentropic or adiabatic equation of state:

dp __dp p (pj

P

P P Po

Density dependence of speed of sound for 1deal gas:

Cz:(@j _rp
op), p

V4
P (ﬁ]
Po Lo



Presenter Notes
Presentation Notes
Some details of the analysis reveal that beyond the linear approximation, the velocity of sound is highly non-linear.


Summary of linearized hydrodynamic equations for isentropic
fluid

In terms of the velocity potential:

ov=—-VOD 2D
2 . —cV'D=0 = P»
ot op .
2
In term of density fluctuation: aafp —c;Viop =0
In term of pressure fluctuation: 06p —c;V:6p=0

ot



Wave equation for air :
Note that, we also have:

2
ot’ —c*’V*p=0
op ot’
Here, ¢’ :(—j PE 5p
op ), 52 —c’Vep =0
v=—-VO !

Boundary values:
Impenetrable surface with normal n moving at velocity V :
n-vV= n-ov=—n-vVo
Free surface:
oD

op=20 = =0
P Lo Py


Presenter Notes
Presentation Notes
Next time, we will consider wave solutions to the equations w/wo boundary values.
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