PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 32: Chap. 9 of F&W

Linear and non-linear sound waves
1. Introduction to non-linear effects

2. Analysis of instability — shock phenomena
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Presenter Notes
Presentation Notes
In this lecture, we will consider traveling wave solutions to the sound wave equations.
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Mon, 10/23/2023

Chap.

Laplace transforms and complex functions

7 #18
Wed, 10/25/2023 |Chap. 7 Complex integration #19
Fri, 10/27/2023 |Chap. 8 Wave motion in 2 dimensional membranes #20
Mon, 10/30/2023 |Chap. 9 Motion in 3 dimensional ideal fluids #21
Wed, 11/01/2023 |Chap. 9 Motion in 3 dimensional ideal fluids #22
Fri, 11/03/2023 |Chap. 9 Ideal gas fluids #23
Mon, 11/06/2023 |Chap. 9 Traveling and standing waves in the linear approximation #24
Wed, 11/08/2023 |Chap. 9 Non-linear and other wave properties Topic
Fri, 11/10/2023 |Chap. 9 Analysis of non-linear waves and shock wayes #25
Mon, 11/13/2023 |Chap. 10 Surface waves in fluids
Wed, 11/15/2023 |Chap. 10 Surface waves in fluids; soliton solutions i
Fri, 11/17/2023 Chap. 11 |Heat conduction signup
Mon, 11/20/2023 |Chap. 12 Viscous effects in hydrodynamics
Wed, 11/22/2023 [Thanksgiving
Fri, 11/24/2023 |Thanksgiving
Mon, 11/27/2023 Presentations |
Wed, 11/29/2023 Presentations 2
Fri, 12/01/2023 Presentations 3
Mon, 12/04/2023 |Chap. 12 Viscous effects in hydrodynamics
Wed, 12/06/2023 Review
Fri, 12/08/2023 Review

11/10/2022

PHY 711 Fall 2023 -- Lecture 32



Presenter Notes
Presentation Notes
Schedule.


PHY 711 -- Assignment #25

Assigned: 11/10/2023 Due: 11/13/2023
Finish reading Chapter 9 in Fetter & Walecka.

1. In class, we discussed how to visualize the non-linear behavior of an adiabatic ideal gas
with parameter y. Using Maple or Mathematica or other software and using a parametric
plot formalism, create an animated gif file to show the traveling waveform s(w), where sis a
shape of your choice and w=x-u(s(w))t. You will also need to choose the value of y as well.

11/10/2022 PHY 711 Fall 2023 -- Lecture 32 3




Now consider some non-linear effects in sound

Examples?

We will consider the simple case —

One dimension for motion

Fluid is assumed to be an ideal gas
Adiabatic conditions

All variables will be expressed in terms of the

density p(x,t)

W=



Effects of nonlinearities in fluid equations
-- one dimensional case

Newton - Euler equation of motion :

ov Vp
5 + (V ) V)V = fapplied S
. : op
Continuity equation : " +V-(pv)=0
Assume spatial variation confined to x direction ;

assume thatv=vx and f ., 6 =0.


Presenter Notes
Presentation Notes
Review of basic equations,  specializing in one spatial dimension.


@+v@+l6—p20
Ot ox p Ox

a—'0+va—'0+,0@=0
ot ox ox

Expressing pin termsof p: p = p(p)

P _Pop Ecz(p)a—p where a—pzcz(,o)
ox Op Ox Ox op
For adiabatic 1deal gas: ap _ yd_p p=Dp, (ﬁ
P P Po

y—1
cz(p):y—p:cg(ﬁj where cézyp()
P Po Po
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Presenter Notes
Presentation Notes
Decoupling the variables.


Digression — What is gamma®?

Internal energy for ideal gas:  pV = Nk, T

E = %NkBT J =degrees of freedom; 3 for atom, 5 for diatomic molecule
C

In terms of specific heat ratio: y =—%-

CWV
dE, = dQ —dw




2
@+V8v+c (p) a'0:0

Ot Ox Yo RRNG»

ot ox ox

Expressing variation of v in terms of v(p):

2
oV 8,0+v5v 8,0+c (,0)8,0:0
op Ot Op Ox 0o Ox

@—'0+v6—'0+p8v P =0

ot Ox Op Ox
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More analysis.


Some more algebra :

2
From Euler equation : v (8,0 n va—pj 4+ (p) Op _ 0
op \ Ot Ox o Ox
From continuity equation :8—’0 + v@_ =—p ov Op

ot  Ox Op Ox

2
Combined equation : » — 0 v op L £ (p) 9p =0
op op Ox 0 Ox
2
(2] fe o
op p op p
:8—'0+(virc)a—'0=0


Presenter Notes
Presentation Notes
Further derivations.


y—1
Assuming adiabatic process: ¢’ = cg (ﬁj c(f _ 1Py
Lo Lo
(y-1)/2
e, (ﬁj
Lo
P A\ (7-1)/2 '
Dol svenaf(2] 2
op dp P 20 \ o P
5 ( (r-1)/2
— p =0 [ﬁj ~1
y =1\ p,


Presenter Notes
Presentation Notes
Using adiabatic relationships.


— =+
dp  p
9% + (v + c)a—p =0
Ot Ox
y—1
Assuming adiabatic process: ¢’ =c;, (ﬁj co = 7Po
Po Po

(r-1)/2 9 (y-1)/2
Po /4 —1 Lo
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Presenter Notes
Presentation Notes
Analysis of fluid velocity from a knowledge of the wave velocity.


S
Traveling wave solution:

Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for
propagation velocity u(p) using equations

From previous derivations : Z—f +(v£c) 2’0 0
X

Apparently : u(p) < vie

For adiabatic ideal gas and + signs :

(r-1)/2
1 2
u=v+c=c, T ('0) ——
y =1\ p, y—1



Presenter Notes
Presentation Notes
Analysis for a traveling wave.


®
Traveling wave solution -- continued:

(’9_,0+(V+C)6p 0
ot Ox

Assume: p=p,+ f(x—u(p)t)=p, +f(x—(virc)t)

For adiabatic ideal gas and + signs :

(y-1)/2
1 2
u=v+c=c, T ['Oj ——
y =1\ py y—1

Solution 1n linear approxiation:

[y+1 , j
u=v+c=v,+c,=c¢, — = ¢,
y—1 y-1

:>p:,00+f(x—cot)


Presenter Notes
Presentation Notes
Checking the linear result


Some details
Assume: p=p,+ f(x—u(p)t)
Need to find self-consistent equations for

propagation velocity u(p) using equations

From previous derivations: % + (v + c) 9 =0
ot Ox
Apparently: u(p) & vxe
Note that foru =v+c¢  (choice of + solution)
2—'? +u (;—'O =0 1s satisfied by a function of the form
X

px,t) = p, + f(x—u(p(x,1)))
Let w=x—u(p(x,t))t

iﬁ—wﬂzdf aw:df(—u+u)=0
dw ot dw ox dw




Traveling wave solution -- full non-linear case:

Visualization for particular waveform: p=p, + f(x —u(p)t)
\ )

Assume: f(w)= p,s(w) !
w
P 1y s(x —ut)
Po

For adiabatic ideal gas:

4 (y-1)/2 3\
1 2
7/ -1 Po

2
u:c[y+i(1+s(x ut)) 1)/2——j
/4


Presenter Notes
Presentation Notes
Analysis of how to visualize the traveling wave solution.


.

Visualization continued:

u=c (7/+1(1+S(X ut)) )/2—ij
y—1 y—1

Plot s(x —ut) for fixed ¢, as a function of x :
Let w=x—ut
x=w+ut=w+u(w)t=x(w,t)
y+1 2 2
u(w)=c 1+ s(w ——
o0=a L (1son) -2
Parametric equations:

plot s(w) vs x(w,t) forrange of w ateach ¢


Presenter Notes
Presentation Notes
More details.


.

Summary
ap
+u
ot (,0) (3x

Solution:  p = p, + f(x—u(p)t) = p,(1+s(x—u(p)t))

For linear case: u(p)=c,
: | 2
For non-linear case: u(p)=c, ()/ il 1 (1 + 5(x — ut)) 2 _ —1)
Yy — Y —

Plot s(x —ut) for fixed ¢, as a function of x :
Let w=x—ut = x=wt+ut=w+u(w)t=x(w,t)
y+1 -1)/2 2
u(w)=c 1+ s(w ——
o0=a L1 so0) -2
Parametric equations: plot s(w) vs x(w,t) forrange of w


Presenter Notes
Presentation Notes
Summary.


[\

VAR

(A

LANAAN

A
/ /] /\X/\ A\

Linear wave:

SN

Non-linear wave:

ﬂW//L‘
ﬂ/wﬂm4
)
T
ff/ﬂz


Presenter Notes
Presentation Notes
Example visualization.


.

Linear wave

-10 0

Non-linear wave
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Presenter Notes
Presentation Notes
Animations from Maple.


Analysis of shock wave

Solution becomes
Plots of dp

unphysical

)
RAVARIVAN VAN /v
A A

shock
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Presenter Notes
Presentation Notes
Note that the vertical axis represents the longitudinal wave displacement.    When this displacement becomes multivalued for a given coordinate x as shown, the solution  becomes unphysical.     At this point we need to consider the analysis in a different way.


Effects of amplitude of 6p

Large amplitude

Smaller amplitude
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Analysis of shock wave — assumed to moving at velocity u

After shock Before shock
t2 t1
0P OV, 0P, 0P, OV4, 0P+

Note that in this case u is assumed to be a

given parameter of the system.
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Presenter Notes
Presentation Notes
Your textbook discusses the shock wave analysis.    Here we assume that there is a region (blue) where the analysis fails,  but assumes that we can properly analyze the physics before and after the shock.     The notation given here is similar to that given in your text.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we

can use conservation laws to analyze regions 1 and 2
Assume IO(‘x3 t) — p(x o ut) After shock " Before shock

p(x,t)= p(x—ut)
v(x,t) = v(x—ut)

Continuity equation:

op O(pv o pv— pu o |
a'[;Jr (8x):O: ( . ) :>(v2—u)p2:(v1—u)p1

Conservation of energy and momentum:

Z>p2+,02(V2—M)2 :p1+p1(vl_”)

Z>€2+—(V2—u)2-I—&:El-l-l(vl—u)z-l——
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Presenter Notes
Presentation Notes
Some of the details of the analysis before and after the shock event.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

After shock

Summary of equations b | pefore shock
9Pz OV, 90 1. V1, P
= (mu)p=(v-u)p __ .
2 2 -
:>p2+,02(v2_u) :p1+p1(vl_”) | |
1 2 P 1 2 pl
=6 +—(v,—u) +—==¢+—(v,—u) +—
i 2( i ) P> 1 2( 1 ) P
Assume that within each regions (1 & 2), the 1deal gas equations apply
61_|_p1: Y D €2+p2: y P
p r=lp P, r=1lp,

1 1
It follows that - +—(v, —u)2 = L&+—(vl —u)2
y=lp, 2
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Presentation Notes
Analyzing the equations.


Analysis of shock wave — continued
For adiabatic ideal gas, also considering energy and

momentum conservation: g g
..Aﬂer.shock... o

| A __Befo_re.sﬁock_
7/+ p2 _|_1 gﬂz; Va, 0P gp;, vy, 6p1
&:7/—1]91 <7/+1 | é___x_
P 7/+1_|_p2 y—1 Y.
y—1 p
5
4_
< ¥ Fory=1.5
Q. 5
1.
0 | l{I)O 2(I)0 | S(I)O

Ps/P,
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Presenter Notes
Presentation Notes
Analyzing ratio of the density after and before the shock wave.


Analysis of shock wave — continued
For adiabatic ideal gas, entropy considerations::

r e
Ideal gas law: P_Ks Adiabatic 1deal gas: P ~ = P ”
p M, P
: E. T
Internal energy density: ¢=—~= P __ Kk =¢,T

M- (y=1)p (r-1)M,

First law of thermo: de& =Tds — pd (lj
o,

dS:l[d{ : }Lpd( ﬂ vt v

s = ln ij constant
ol

o[ B(8]] 0ssms o uf2) 2]
p P 7/_1



Presenter Notes
Presentation Notes
Analyzing the entropy before and after the shock wave.     In general, many more relationships can be analyzed.    Consult your textbook for more details.   
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