PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 36: Chap.12inF & W

Viscous fluids
1. Viscous stress tensor

2. Navier-Stokes equation

3. Example for incompressible fluid — Stokes “law”

4. Effects on sound waves => next time
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Presenter Notes
Presentation Notes
In this lecture, we will consider some effects of viscosity on the motion of fluids, following Chapter 12 of your textbook.


29 |Fri, 11/03/2023 |Chap. 9 |deal gas fluids #23
31 Mon, 11/06/2023 |Chap. 9 Traveling and standing waves in the linear approximation #24
32 Wed, 11/08/2023 |Chap. 9 Non-linear and other wave properties Topic
33 |Fri, 11/10/2023 |Chap. 9 Analysis of non-linear waves and shock waves #25
34 Mon, 11/13/2023 |Chap. 10 Surface waves in fluids #26
35 Wed, 11/15/2023 |Chap. 10 Surface waves in fluids; soliton solutions #27
36 Fri, 11/17/2023 |Chap. 11 Heat conduction #28
37 Mon, 11/20/2023 |Chap. 12 Viscous effects in hydrodynamics

Wed, 11/22/2023 |[Thanksgiving

Fri, 11/24/2023 |Thanksgiving

Mon, 11/27/2023 Presentations |

Wed, 11/29/2023 Presentations 2

Fri, 12/01/2023 Presentations 3
38 |Mon, 12/04/2023 |Chap. 12 Viscous effects in hydrodynamics
39 Wed, 12/06/2023 Review
40 Fri, 12/08/2023 Review
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Presenter Notes
Presentation Notes
Schedule.


PHY 711 Presentation Schedule

Monday 11/27/2023

- Presenter Name Topic
10:00-10:16 | Gabby Tamayo Three body problem / Ejection
10:17-10:33 | Thilini Karunarathna Lagrangian and Hamiltonian Equations
10:34-10:50 | Joe Granlie Canonical transformations (+Ham. Jacobi
maybe)
Wednesday 11/29/2023
Presenter Name Topic
10:00-10:24 | Athul Prem Mumerical simulation of particle dynamics
10:25-10:50 | David Carchipulla-Morales Eddy Covariance Momentum Conservation
Friday 12/01/2023
Presenter Name Topic
10:00-10:24 | Caela Flake Analyze the eqguations of mation for the
Foucoult Pendulum
10:25-10:50 | Mitchell Turk Molecular Dynamics Simulation Mechanics
and Methods
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Equations for motion of non-viscous fluid

Newton-Euler equation of motion:

ov
p5+p(v'v)vzpfapplied _Vp

Continuity equation:

Z_€+V.(pv)zo = V(a—p-FV(IOV)j:O

Add the two equations:

8V+8,0

(Oﬁt ot

v+ p(Vv-V)V+vV-(pv)=pf ., —VP
] |\ J

! 3 8(pv.v)
ol pv /
3

ot /=1



Presenter Notes
Presentation Notes
Reviewing the fluid equations that we have discussed previously, combining Newton’s equations with the continuity equation to find a new convenient form.


Equations for motion of non-viscous fluid -- continued

Modified Newton-Euler equation in terms of fluid momentum:

,OV 3 PV, ¥
— QT JZ:, ( Gx ) = pf applicd — YD

3 0 pv,v
+ Z (5)6] )+Vp P fapplled

J=1 J

Fluid momentum:  pv

Stress tensor: T, =pvyv, + po,

" component of Newton-Euler equation:

0(pv,) , 0T _
ot +;@xj =P/



Presenter Notes
Presentation Notes
Here we recognize terms that have the  units of force/area and can be described as a stress tensor Tij.


Now consider the effects of viscosity

In terms of stress tensor:
1deal viscous

Tl] - ZJ +1, ij

1deal

ideal .
T _pvzv'_l_pé‘ij_]}i

As an example of a viscous effect, consider --

Newton's "law" of viscosity
F ov,

X

A f@y y

material dependent parameter
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Presenter Notes
Presentation Notes
The next step is to imagine that the additional effects of viscosity should/can be represented as a viscous stress tensor.     The example of sheer force suggests that the viscous stress tensor involves derivatives of the velocity of the fluid.


.

Effects of viscosity
Argue that viscosity 1s due to shear forces in a fluid of the form:

F drag avx

A oy

Formulate viscosity stress tensor with traceless and diagonal terms:

iscous 8 a 2
I ——n[ . Vf——akl(v-v)]—wk,(v-w

ox, Ox, 3 '

bulk viscosity

viscosity
Total stress tensor: 7, = Tkl'ldeal 4 Tk;iscous
ideal
T = pvv, + po,
ov, 8\/[ 2

ox ox, — §5k, (V - V)j — (0, (V - V)

Viscous _
1 —7] (
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Presenter Notes
Presentation Notes
Imagining the most general form of the viscous tensor, we consider all derivatives of all components of fluid velocity, separating out the terms with zero trace, with the remaining terms proportional to the divergence of the velocity and representing the “bulk” viscosity.


‘Effects of viscosity -- continued
Incorporating generalized stress tensor into Newton-Euler equations

o(pv;) <97,
ot +,Z:1: oy =P,
a(pvl.) 5(,0\/1-\/]) 0*v

Continuity equation

8—'0+Z3:a pv].):O

o 5 O,
Vector form (Navier-Stokes equation)
ov

—+(v-V)v=f —le +£Vzv+l(§+lnjV(V V)
5/ : P Jo, 3
Continuity equation

ap
V-(pv)=0
—+V-(pv)


Presenter Notes
Presentation Notes
Now we can write the fluid equations with the full stress tensor.    The continuity equation still applies.   The so-called Navier-Stokes equation summarizes the expected behavior of fluids in terms of the material dependent viscosity parameters eta and zera.


Newton-Euler equations for viscous fluids

Navier-Stokes equation

1
@—I—(V V)V f—le—I—anV—l- (§+ U]V(V-V)
ot P P p 3
Continuity condition
ap
+V-(pv)=0
= Vo (ov)

Typical viscosities at 20° C and 1 atm:

____Fluid | __np(m¥s) | n(Pas) _

Water 1.00 x 10 1x103
Air 14.9 x 106 0.018 x 103
Ethyl alcohol 1.52 x 10° 1.2x 103
Glycerine 1183 x 10 1490 x 103
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Presenter Notes
Presentation Notes
Here is a list of some typical values of the viscosity parameter eta.


®
Example — steady flow of an incompressible fluid in a long

pipe with a circular cross section of radius R
Navier-Stokes equation

6—V+(v V)v f—leJr T2y 4 — (§+ 177]V(V.v)
ot P P P 3
Continuity condition

Note that Vx(Vxv)=V(V-v)-V’v
P (pv)=0 W =v¥y)
Incompressible fluild = V-v=0

0
Steady flow = 2o

ot
Irrotational flow = Vxv=0

No applied force = =0

Neglect non-linear terms = V (vz) =0


Presenter Notes
Presentation Notes
Example of a measurement of viscosity for irrotational flow.


Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

Navier-Stokes equation becomes:

1
0=——Vp+lviy _
P P
Assume that v(r,t)=v,_(r)z _
op
—=nV?_(r) (independent of z)
Oz _
Suppose that — 8p _op
oz L (uniform pressure gradient)
= Vi (r) = &
nL
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Presenter Notes
Presentation Notes
Continued analysis of simple viscous flowl


Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

1d rdvz(r) A
rdr dr nL

Apr? _
v.(r) == cin(r+C, L
4nL
ApR* —
-C=0 v(R)=0=—"2"1C,
4nL
vz(r)z—Ap (Rz—rz)
4nL
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Presenter Notes
Presentation Notes
Solving for the velocity profile.


Comment on boundary condition
v.(R)=0

Fluid approximately stationary
at boundary

—

R
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Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

v.(r)= R —r
(=g (g2
Mass flow rate through the pipe:

dM R
? = 27Z'pj0 VdI’VZ (I") =

Appr R’
8nL

Poiseuille formula;
=>Method for measuring n
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Presenter Notes
Presentation Notes
This analysis is useful for measuring eta.


Example — steady flow of an incompressible fluid in a long
tube with a circular cross section of outer radius R and inner
radius xR

1d rdvz(r) _ Ap
rdr dr nL

Apr’
v (r)=-— +C In(r)+C
(7) L O (r)+C,
ApR’
v.(R)=0=-""_1C In(R)+C,
4nL
22
v.(kR)=0= —A‘DK R +C, In(xkR) + C,
4nL
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Presenter Notes
Presentation Notes
Another related system with a cylindrical shell.


Example — steady flow of an incompressible fluid in a long

tube with a circular cross section of outer radius R and inner
radius kR -- continued

11/20/2023

dM

dt

Solving for C, and C, :

Appr R’

_ApR2 B
v (r) = 477L[ (

=27p j:R rdrv_(r) = Sl

PHY 711 Fall 2023 -- Lecture 36
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\

-«

4

_|_

Mass flow rate through the pipe:

()

Inx

16/


Presenter Notes
Presentation Notes
The final result again can be used to measure the viscosity.


More discussion of viscous effects in incompressible fluids

Stokes' analysis of viscous drag on a sphere of radius R

moving at speed u 1n medium with viscosity 77 :
F,=-n (672Ru)

Plan: o
1. Consider the gener y on fluid
equations

2. Consider the solution to the linearized equations
for the case of steady-state flow of a sphere of
radius R

3. Infer the drag force needed to maintain the

steady-state flow
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Presenter Notes
Presentation Notes
Changing to an analysis of  viscous flow as a drag force.


Have you ever encountered Stokes law in previous

contexts?

a. Milliken oil drop experiment

b. A sphere falling due to gravity in a viscous fluid,
reaching a terminal velocity

c. Other?



Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

V
Z—V+(V-V)V=fapphed— p+77V2V
[

£ob

v  Kinematic viscosity

Typical kinematic viscosities at 20° C and 1 atm:

_ Fluid | v(mls)
Water 1.00 x 106
Air 14.9 x 10°
Ethyl alcohol 1.52 x 10°
Glycerine 1183 x 10°
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Presenter Notes
Presentation Notes
In this case, we will consider an incompressible fluid in which case eta/rho is the important parameter.


®
Stokes' analysis of viscous drag on a sphere of radius R

moving at speed 1 1n medium with viscosity 77 :

Effects of drag force on motion of

particle of mass m with constant force F :

F—67zR77u=m% with u#(0)=0

_67R7
:u(t)=6]; El—e mtj
R 7
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Presenter Notes
Presentation Notes
Before deriving Stokes law of viscous drag, it is interesting to recall its effects.


&
Effects of drag force on motion of

particle of mass m with constant force F :

F—6rRnu = m% with #(0)=0
_67R7
= u(t) = ! l—e m
67Rn

60
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Presenter Notes
Presentation Notes
Objects moving in the presence of the Stokes viscous drag, tend to read a steady “terminal” velocity.


®)

Effects of drag force on motion of particle of mass m
with an 1nitial velocity with #(0) = U, and no external force

—671 Rnju = m@
dt

_6ﬁRnt
=>u)=U,e "

1.0

09
08
07
06
U os
04
03
02

0.1

0 1 2 3 4 5

t
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Presenter Notes
Presentation Notes
Or the velocity decays to zero.


S
Recall: PHY 711 -- Assignment #22 Nov. 01, 2023

Determine the form of the velocity potential for an
incompressible fluid representing uniform velocity in the z
direction at large distances from a spherical obstruction
of radius a. Find the form of the velocity potential and the
velocity field for all r > a. Assume that for r = a, the
velocity in the radial direction is 0 but the velocity in the

azimuthal direction is not necessarily 0.
Wﬂ//_‘%\\_\_g_

VD =0 TS

3 R NN

a T N YT
CD(r,@):—vO r+—|cosl v o

e g s i
TESSSRISST

In the present viscous case, we R

will assume that v(a)=0.
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Presenter Notes
Presentation Notes
In previous discussions without viscosity, the velocity near the sphere is not necessarily zero.     How will this be affected in the presence of viscosity?


Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

\Y%
@Jr(V-V)V:f U L A 22
ot p P

app
Continuity equation: V-v=0

oV
Assume steady state: = = =0
[
Assume non-linear effects small
Initially set £, .., = 0;

= Vp=nV’v


Presenter Notes
Presentation Notes
Here we keep the dominant terms, finding a relationship between the pressure and the velocity.


Vp=nV’v
Take curl of both sides of equation:
Vx(Vp)=0=nV*(Vxv)

Assume (with a little insight from Landau):
V=V><(V><f(r)u)+u
where  f(r)————0

Note that:

Vx(VxA)=V(V-A)-V’A



Presenter Notes
Presentation Notes
This analysis follows the treatment of Landau and Lifshitz.


®
Digression

Some comment on assumption: v =V x (V X f(r)u) +u
Vx(VxA)=V(V-A)-V°A

Here A = f(r)u
Vxv=Vx(Vx(VxA))=-Vx(VA)

Alsonote: Vp=nV’v

=>VxVp=0=VxpV’v  or V*(Vxv) =0

Vi (VxV?A)=V*(VxA)=0


Presenter Notes
Presentation Notes
Deducing the form of the velocity


.
V=V><(V><f(r)u)_|_u

u=uz

Vx(Vx f(r)z)=V(V- f(r)z)-V’f(r)z

Vxv=0 :>V2(va):0

VIV f(nz)=0 =VHVf(r)xz)=0 =V*f(r)=0
f(’”)=C1r2+C2r+C3+Q

Vr:“COSQ( —EZ—szucosé?(l—4C1—2C2 +2€4j

3
r r

2
Vo Z—MSiné’(l—C;—f—lZ’ij:—usin9(1—4Cl G C4j


Presenter Notes
Presentation Notes
Here we find the most general form of the equation that satisfies the differential equation.


~ Some details:

> 2d)
V* =( =>| —+—— =0
f () (drz ra’r] 1 (r)
f(r)=C1r2+C2r+C3+Q
r

Vzu(Vx(fo(r)i)Jri)
=u(V(V (£(r)2))-V2/(r)z+ z)

Note that: Z = cos & — sin 60

V=u (V(Z—J;cos 9) — (V2 (f()- 1)(003 Or — sin 6’6))


Presenter Notes
Presentation Notes
Some details.


vr:ucose( —zﬂj:ucose(l—4Cl—2C2 +2€4j
r dr v 4
2
v, =—usin@ 1_%_l£ =—usin6’(1—4C1—C2—C;‘j
dr r dr roor
To satisty v(r > o) =u: =C, =0
To satisfy v(R)=0 solve for C,,C,
3
V. =ucoso 1—3R+ R3
2r  2r
3
v, =—usind 1—3R— R3
4r 4r


Presenter Notes
Presentation Notes
Assume that the velocity achieves steady flue far from the sphere and is zero on the sphere boundary.


11/20/2023

3

V. =ucost 1—3R+ R3
2r  2r

. R R
v, =—using 1—3 ——
4r 4r

Determining pressure:

Vp=nV’v=-nV (u COS 9(3—]32))

2r

s ()= py = cos9(3—1§j

2r
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Presenter Notes
Presentation Notes
Finding all the constants and solving for the pressure .


p(r) =, - nucose( 3Rj
27

Corresponds to:
F,cos0=(p(R)— p,)4nR* =—nucosO(67R)
= F, =—nu (67Z'R)
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Presenter Notes
Presentation Notes
Deducing the drag force from the solution to the differential equation.
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