PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes on Lecture 37
Continued discussion of viscous fluids: Chap. 12 in F \& W

1. Some general comments
2. Navier-Stokes equation
3. Review of results from last time - Stokes "law"
4. Effects on linearize sound waves

35	Fri, 11/17/2023	Chap. 11	Heat conduction	\#28
36	Mon, 11/20/2023	Chap. 12	Viscous effects in hydrodynamics	
	Wed, 11/22/2023	Thanksgiving		
	Fri, 11/24/2023	Thanksgiving		
	Mon, 11/27/2023		Presentations I	
	Wed, 11/29/2023		Presentations 2	
	Fri, 12/01/2023		Presentations 3	
37	Mon, 12/04/2023	Chap. 12	Viscous effects in hydrodynamics	
38	Wed, 12/06/2023		Review	
39	Fri, 12/08/2023		Review	

Please fill out the course evaluation form for PHY 711 in class on Friday or on your own at your leisure.

Final exam during finals week
12/11/2023-12/16/2023
(final grades due 12/20/2023 at noon)

Physics Colloquium - December 7, 2023 4-5 PM in Olin 101

Nuclear Quantum Effects: Insights from First-Principles Theory

In electronic structure theory, atomic nuclei are generally treated as classical point charges. However, there is a growing realization that the quantum-mechanical nature of light atomic nuclei like protons is essential for predicting certain properties. In recent years, this so-called nuclear quantum effect (NQE) has become an important topic in condensed matter physics and chemistry. In this talk, I will discuss how we examine different aspects of NQE by advancing first-principles electronic structure theory. I will first focus on the use of the path integral approach with first-principles molecular dynamics simulation based on density functional theory (DFT) for examining the NQE in liquid water and ionic solution. I will then discuss how multi-component DFT can be used with the nuclear electronic orbital (NEO) method for studying the coupled quantum dynamics of electrons and protons in heterogeneous matter in the context of real-time time-dependent DFT.

Jianhang Xu

Department of Physics
 UNC Chapel Hill

Comment on HW \#28

Read Chapter 11 of Fetter and Walecka.

1.

A cylindrical solid material with cylindrical radius a and length L and thermal diffusivity κ has a time-dependent cylindrically symmetric temperature profile $T(r, z, t)$. In these cylindrical coordinates, the material is contained within $a \geq r \geq 0$ and $L \geq z \geq 0$. In the absense of external heating, the temperature profile is is welldescribed by the equation of heat conduction

$$
\frac{\partial T}{\partial t}=\kappa \nabla^{2} T .
$$

Somehow for $t \leq 0$, the material is prepared so that its temperature profile is given by

$$
T(r, z, t \leq 0)= \begin{cases}0 & \text { for } r>a \text { and/or } z>L \\ A \cos (\pi z / L) & \text { for } r \leq a \text { and/or } z \leq L\end{cases}
$$

Then, at $t=0$ the cylindrical solid is placed in a thermally insulated container so that its temperature is well-described by the boundary conditions

$$
\hat{\mathbf{n}} \cdot \nabla T(r, z, t)=0
$$

at all of its surfaces. Find an expression for the temperature profile of this system $T(r, z, t)$ for $t>0$.

The diffusion (or heat conduction) equation for the temperature profile $T(\mathbf{r}, t)$:
$\frac{\partial T}{\partial t}=\kappa \nabla^{2} T$
For cylindrical coordinates -- $T(\mathbf{r}, t)=T(r, \varphi, z, t)$ and the diffusion equation takes the form:
$\frac{\partial T(r, \varphi, z, t)}{\partial t}=\kappa\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) T(r, \varphi, z, t)$

Partial differential equation:
$\frac{\partial T(r, \varphi, z, t)}{\partial t}=\kappa\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) T(r, \varphi, z, t)$
Assume separable form: $\quad T(r, \varphi, z, t)=R(r) \Phi(\varphi) Z(z) f(t)$
In this particular case, the φ dependence is trivial, so that it is reasonable to assume that $T(r, \varphi, z, t)=T(r, z, t)=R(r) Z(z) f(t)$
Then $\frac{\partial T(r, z, t)}{\partial t}=R(r) Z(z) \frac{d f(t)}{d t}$
$\nabla^{2} T(r, z, t)=Z(z) f(t)\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}\right) R(r)+R(r) f(t) \frac{d^{2} Z(z)}{d z^{2}}$

The separable form works best, when each factor solves a differential eigenvalue problem.
Suppose $\frac{d f(t)}{d t}=-\lambda f(t)$ and $\frac{d^{2} Z(z)}{d z^{2}}=-\alpha Z(z)$
Then $R(r)$ must solve the equation:
$-\lambda R(r)=\kappa\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-\alpha\right) R(r)$
or $\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}+\left(\frac{\lambda}{\kappa}-\alpha\right)\right) R(r)=0$

Solution of ordinary differential equation:

$$
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}+\left(\frac{\lambda}{\kappa}-\alpha\right)\right) R(r)=0
$$

Recall that the regular solution of the Bessel equation of order 0 is a solution of the differential equation:
$\left(\frac{d^{2}}{d x^{2}}+\frac{1}{x} \frac{d}{d x}+1\right) J_{0}(x)=0$
Therefore, $R(r)=C J_{0}(\mu r)$ where C is a constant and
$\mu^{2}=\frac{\lambda}{\kappa}-\alpha$
More generally, multiple solutions μ_{n} may be viable, in which case the solution has the form $R(r)=\sum_{n} C_{n} J_{0}\left(\mu_{n} r\right)$.

Full general solution:

$$
\begin{aligned}
& T(r, z, t)=\sum_{n} C_{n} J_{0}\left(\mu_{n} r\right) \cos \left(\frac{\pi z}{L}\right) e^{-\lambda_{n} t} \\
& \text { where } \lambda_{n}=\kappa\left(\mu_{n}^{2}+\frac{\pi^{2}}{L^{2}}\right)
\end{aligned}
$$

Somehow for $t \leq 0$, the material is prepared so that its temperature profile is given by

$$
T(r, z, t \leq 0)= \begin{cases}0 & \text { for } r>a \text { and/or } z>L \\ A \cos (\pi z / L) & \text { for } r \leq a \text { and } z \leq L\end{cases}
$$

Then, at $t=0$ the cylindrical solid is placed in a thermally insulated container so that its temperature is well-described by the boundary conditions

$$
\hat{\mathbf{n}} \cdot \nabla T(r, z, t)=0
$$

at all of its surfaces. Find an expression for the temperature profile of this system $T(r, z, t)$ for $t>0$.

Finishing up --
$T(r, z, t)=\sum_{n} C_{n} J_{0}\left(\mu_{n} r\right) \cos \left(\frac{\pi z}{L}\right) e^{-\lambda_{n} t}$ with $\lambda_{n}=\kappa\left(\mu_{n}^{2}+\frac{\pi^{2}}{L^{2}}\right)$
Satisfies the differential equation, but does not satisfy boundary and initial conditions

Need to find μ_{n} and C_{n}.
For boundary value at $r=a$ $\left.\frac{d J_{0}\left(\mu_{n} r\right)}{d r}\right|_{r=a}=0$

Define $\frac{d J_{0}\left(x_{n}^{\prime}\right)}{d x}=0$

$$
\mu_{n}=\frac{x_{n}^{\prime}}{a}
$$

Note that the functions $J_{0}\left(\mu_{n} r\right)$ form a set of orthogonal functions over the range $0 \leq r \leq a$.

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}+\mu_{n}^{2}\right) J_{0}\left(\mu_{n} r\right)=0 \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}+\mu_{m}^{2}\right) J_{0}\left(\mu_{m} r\right)=0 \\
& J_{0}\left(\mu_{m} r\right)\left(\frac{1}{r} \frac{d}{d r} r \frac{d}{d r}\right) J_{0}\left(\mu_{n} r\right)-J_{0}\left(\mu_{n} r\right)\left(\frac{1}{r} \frac{d}{d r} r \frac{d}{d r}\right) J_{0}\left(\mu_{m} r\right)= \\
& \quad\left(\mu_{m}^{2}-\mu_{n}^{2}\right) J_{0}\left(\mu_{n} r\right) J_{0}\left(\mu_{m} r\right)
\end{aligned}
$$

If $\mu_{n}=\mu_{m}$, then the equality is trivial. If $\mu_{n} \neq \mu_{m}$, the integrating both sides of the equation $0 \leq r \leq a$ implies that
$\int_{0}^{a} d r r J_{0}\left(\mu_{n} r\right) J_{0}\left(\mu_{m} r\right)=0$

Full general solution:
$T(r, z, t)=\sum_{n} C_{n} J_{0}\left(\mu_{n} r\right) \cos \left(\frac{\pi z}{L}\right) e^{-\lambda_{n} t}$
where $\lambda_{n}=\kappa\left(\mu_{n}^{2}+\frac{\pi^{2}}{L^{2}}\right)$

$$
\text { and where } \mathrm{C}_{n}=A \frac{\int_{0}^{a} d r r J_{0}\left(\mu_{n} r\right)}{\int_{0}^{a} d r r J_{0}^{2}\left(\mu_{n} r\right)}
$$

Back to discussion of fluids with the inclusion of viscosity --

Equations for motion of non-viscous fluid --
Modified Newton-Euler equation in terms of fluid momentum:
$\frac{\partial(\rho \mathbf{v})}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j} \mathbf{v}\right)}{\partial x_{j}}=\rho \mathbf{f}_{\text {applied }}-\nabla p$
$\frac{\partial(\rho \mathbf{v})}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j} \mathbf{v}\right)}{\partial x_{j}}+\nabla p=\rho \mathbf{f}_{\text {applied }}$
Fluid momentum: $\quad \rho \mathbf{v}$
Stress tensor: $\quad T_{i j} \equiv \rho v_{i} v_{j}+p \delta_{i j}$
$i^{\text {th }}$ component of Newton-Euler equation:

$$
\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{j=1}^{3} \frac{\partial T_{i j}}{\partial x_{j}}=\rho f_{i}
$$

Now consider the effects of viscosity

In terms of stress tensor:

$$
\begin{aligned}
& T_{i j}=T_{i j}^{\mathrm{ideal}}+T_{i j}^{\mathrm{viscous}} \\
& T_{i j}^{\mathrm{ideal}}=\rho v_{i} v_{j}+p \delta_{i j}=T_{j i}^{\mathrm{ideal}}
\end{aligned}
$$

As an example of a viscous effect, consider --
Newton's "law" of viscosity

$$
\frac{F_{x}}{A}=\eta \frac{\partial v_{x}}{\partial y}
$$

material dependent parameter

Effects of viscosity

Argue that viscosity is due to shear forces in a fluid of the form:

$$
\frac{F_{d r a g}}{A}=\eta \frac{\partial v_{x}}{\partial y}
$$

Formulate viscosity stress tensor with traceless and diagonal terms:

Total stress tensor: $T_{k l}=T_{k l}^{\text {ideal }}+T_{k l}^{\text {viscous }}$
$T_{k l}^{\text {ideal }}=\rho v_{k} v_{l}+p \delta_{k l}$
$T_{k l}^{\mathrm{viscous}}=-\eta\left(\frac{\partial v_{k}}{\partial x_{l}}+\frac{\partial v_{l}}{\partial x_{k}}-\frac{2}{3} \delta_{k l}(\nabla \cdot \mathbf{v})\right)-\zeta \delta_{k l}(\nabla \cdot \mathbf{v})$

Effects of viscosity -- continued

Incorporating generalized stress tensor into Newton-Euler equations
$\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{i=1}^{3} \frac{\partial T_{i j}}{\partial x_{j}}=\rho f_{i}$
$\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{i} v_{j}\right)}{\partial x_{j}}=\rho f_{i}-\frac{\partial p}{\partial x_{i}}+\eta \sum_{j=1}^{3} \frac{\partial^{2} v_{i}}{\partial x_{j}^{2}}+\left(\zeta+\frac{1}{3} \eta\right) \sum_{j=1}^{3} \frac{\partial^{2} v_{j}}{\partial x_{i} \partial x_{j}}$
Continuity equation
$\frac{\partial \rho}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j}\right)}{\partial x_{j}}=0$
Vector form (Navier-Stokes equation)
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})$
${ }^{\partial}$ Continuity equation
$\frac{\partial \rho}{\partial t_{12 / 04 / 2023}}+\nabla \cdot(\rho \mathbf{v})=0$

Newton-Euler equations for viscous fluids
Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Typical viscosities at $20^{\circ} \mathrm{C}$ and 1 atm :

Fluid	$\eta / \mathrm{p}\left(\mathrm{m}^{2} / \mathrm{s}\right)$	$\eta(\mathrm{Pa} \mathrm{s})$
Water	1.00×10^{-6}	1×10^{-3}
Air	14.9×10^{-6}	0.018×10^{-3}
Ethyl alcohol	1.52×10^{-6}	1.2×10^{-3}
Glycerine	1183×10^{-6}	1490×10^{-3}

More discussion of viscous effects in incompressible fluids
Stokes' analysis of viscous drag on a sphere of radius R moving at speed u in medium with viscosity η :
$F_{D}=-\eta(6 \pi R u)$

"Derivation"

1. Consider the general effects of viscosity on fluid equations
2. Solve the linearized equations for the case of steady-state flow of a sphere of radius R
3. Infer the drag force needed to maintain the steady-state flow
4. Note that solution is special to the sphere geometry.

Additional effects of viscosity - allowing for changes in entropy -- particularly in the case of sound waves in air

$$
p(\rho, s)=p_{0}+\left(\frac{\partial p}{\partial \rho}\right)_{s} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s
$$

Newton-Euler equations for viscous fluids
Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Newton-Euler equations for viscous fluids - effects on sound Without viscosity terms:

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p \quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0 \quad \rho=\rho_{0}+\delta \rho$

$$
p=p_{0}+\delta p=p_{0}+\left(\frac{\partial p}{\partial \rho}\right)_{s} \delta \rho \equiv p_{0}+c^{2} \delta \rho
$$

Linearized equations: $\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho \quad \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
Let $\delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

Sound waves without viscosity -- continued
Linearized equations: $\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho \quad \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
Let $\delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$
$\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho$
$\Rightarrow \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}$
$\frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
$\Rightarrow-\omega \delta \rho_{0}+\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0$
$\Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}$

$$
\frac{\delta \rho_{0}}{\rho_{0}}=\frac{\hat{\mathbf{k}} \cdot \delta \mathbf{v}_{0}}{c}
$$

\rightarrow Pure longitudinal harmonic wave solutions

Newton-Euler equations for viscous fluids - effects on sound Recall full equations:

Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0 \quad \rho=\rho_{0}+\delta \rho$

$$
\begin{aligned}
& p=p_{0}+\delta p=p_{0}+c^{2} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s \\
& \text { where } c^{2} \equiv\left(\frac{\partial p}{\partial \rho}\right)_{s} \\
& \text { PHY } 711 \text { Fall 2023-- Lecture } 37
\end{aligned} \begin{aligned}
& \text { viscosity } \\
& \text { causes heat } \\
& \text { transfer }
\end{aligned}
$$

Newton-Euler equations for viscous fluids - effects on sound Note that pressure now depends both on density and entropy so that entropy must be coupled into the equations

$$
\begin{array}{lc}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v}) \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 & \rho T \frac{\partial s}{\partial t}=k_{t h} \nabla^{2} T
\end{array}
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0$

$$
\rho=\rho_{0}+\delta \rho
$$

$$
\begin{aligned}
& p=p_{0}+\delta p=p_{0}+c^{2} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s \\
& T=T_{0}+\delta T=T_{0}+\left(\frac{\partial T}{\partial \rho}\right)_{s} \delta \rho+\left(\frac{\partial T}{\partial s}\right)_{\rho} \delta s \\
& s=s_{0}+\delta s
\end{aligned}
$$

Newton-Euler equations for viscous fluids linearized equations

$$
\begin{aligned}
& \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v}) \\
& \Rightarrow \frac{\partial \delta \mathbf{v}}{\partial t}=-\underbrace{\frac{1}{\rho_{0}} \nabla \delta p+\frac{\eta}{\rho} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v})} \\
&-\frac{1}{\rho_{0}}\left\{\left(\frac{\partial p}{\partial \rho}\right)_{s} \nabla \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \nabla \delta s\right\}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s
\end{aligned}
$$

Digression -- from the first law of thermodynamics:

$$
\begin{aligned}
& d \epsilon=T d s+\frac{p}{\rho^{2}} d \rho \\
& \left(\frac{\partial}{\partial \rho}\left(\frac{\partial \epsilon}{\partial s}\right)_{\rho}\right)_{s}=\left(\frac{\partial T}{\partial \rho}\right)_{s} \Leftrightarrow\left(\frac{\partial}{\partial s}\left(\frac{\partial \epsilon}{\partial \rho}\right)_{s}\right)_{\rho}=\left(\frac{\partial p / \rho^{2}}{\partial s}\right)_{\rho} \approx \frac{1}{\rho_{0}^{2}}\left(\frac{\partial p}{\partial s}\right)_{\rho}
\end{aligned}
$$

Newton-Euler equations for viscous fluids linearized equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
& \Rightarrow \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \rho T \frac{\partial s}{\partial t}=k_{t h} \nabla^{2} T \\
& \Rightarrow \frac{\partial \delta s}{\partial t}=\frac{k_{t h}}{\rho_{0} T_{0}}\left(\left(\frac{\partial T}{\partial s}\right)_{\rho} \nabla^{2} \delta s+\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho\right)
\end{aligned}
$$

Further relationships:

$$
\left(\frac{\partial T}{\partial s}\right)_{\rho} \approx \frac{T_{0}}{c_{v}} \quad \kappa=\frac{k_{t h}}{\rho c_{p}}
$$

heat capacity at constant volume

Newton-Euler equations for viscous fluids linearized equations
$\Rightarrow \frac{\partial \delta s}{\partial t}=\left(\gamma \kappa \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho\right) \quad$ where $\gamma \equiv \frac{c_{p}}{c_{v}}$

Newton-Euler equations for viscous fluids - effects on sound Linearized equations (with the help of various thermodynamic relationships):

$$
\begin{aligned}
& \frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s+\frac{\eta}{\rho_{0}} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v}) \\
& \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \frac{\partial \delta s}{\partial t}=\gamma \kappa \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho
\end{aligned}
$$

Here: $\quad \gamma=\frac{c_{p}}{c_{v}}$

$$
\kappa=\frac{k_{t h}}{c_{p} \rho_{0}}
$$

Linearized hydrodynamic equations

$$
\begin{aligned}
& \frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s+\frac{\eta}{\rho_{0}} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v}) \\
& \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \frac{\partial \delta s}{\partial t}=\gamma_{K} \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho
\end{aligned}
$$

It can be shown that
$\left(\frac{\partial T}{\partial \rho}\right)_{s}=\frac{T c^{2} \beta}{\rho c_{p}} \quad$ where $\quad \beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \quad$ (thermal expansion)

Let $\quad \delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta s \equiv \delta s_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

Linearized hydrodynamic equations; plane wave

 solutions:$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

In the absense of thermal expansion, $\beta=0$

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}
\end{aligned}
$$

\rightarrow Entropy and mechanical modes are independent

Linearized hydrodynamic equations; full plane wave solutions:

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

Longitudinal solutions: $(\delta \mathbf{v} \cdot \mathbf{k} \neq 0)$:

$$
\begin{aligned}
& \left(\omega^{2}-c^{2} k^{2}+i \frac{\omega k^{2}}{\rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)\right) \delta \rho_{0}-\frac{\rho_{0} T_{0} \beta c^{2} k^{2}}{c_{p}} \delta s_{0}=0 \\
& \frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}+\left(\omega+i \gamma \kappa k^{2}\right) \delta s_{0}=0
\end{aligned}
$$

Linearized hydrodynamic equations; full plane wave solutions:
Longitudinal solutions: $(\delta \mathbf{v} \cdot \mathbf{k} \neq 0)$:
$\left(\omega^{2}-c^{2} k^{2}+i \frac{\omega k^{2}}{\rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)\right) \delta \rho_{0}-\frac{\rho_{0} T_{0} \beta c^{2} k^{2}}{c_{p}} \delta s_{0}=0$
$\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}+\left(\omega+i \gamma \kappa k^{2}\right) \delta s_{0}=0$

Approximate solution: $\quad k=\frac{\omega}{c}+i \alpha$
where $\alpha \approx \frac{\omega^{2}}{2 c^{3} \rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)+\frac{\kappa T_{0} \beta^{2} \omega^{2}}{2 c_{p} c}$
$\delta \rho=\delta \rho_{0} e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}} e^{i \frac{\omega}{c}(\hat{\mathbf{k}} \cdot \mathbf{r}-c t)}$

Linearized hydrodynamic equations; full plane wave solutions:

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

Transverse modes $(\delta \mathbf{v} \cdot \mathbf{k}=0)$:

$$
\begin{aligned}
& \delta \rho_{0}=0 \quad \delta s_{0}=0 \\
& \left(\omega+\frac{i \eta k^{2}}{\rho_{0}}\right)(\delta \mathbf{v} \times \mathbf{k})=0 \quad k= \pm\left(\frac{i \omega \rho_{0}}{\eta}\right)^{1 / 2}
\end{aligned}
$$

