PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 37

Continued discussion of viscous fluids:
Chap.12inF & W

Some general comments
Navier-Stokes equation

Review of results from last time — Stokes “law”

e

Effects on linearize sound waves

12/04/2023 PHY 711 Fall 2023 -- Lecture 37 1


Presenter Notes
Presentation Notes
In this lecture, we will consider some effects of viscosity on the motion of fluids, following Chapter 12 of your textbook.


35/Fri 111172023 Chap 11 Heat conduction 48

36 Mon, 11/20/2023 |Chap. 12 \Viscous effects in hydrodynamics

Wed, 11/22/2023 Thanksgiving

Fri, 11/24/2023  Thanksgiving

Mon, 11/27/2023 Presentations |
Wed, 11/29/2023 Presentations 2
Fri, 12/01/2023 Presentations 3
» 37 Mon, 12/04/2023 |Chap. 12 Viscous effects in hydrodynamics
38 Wed, 12/06/2023 Review
39 Fri, 12/08/2023 Review

Please fill out the course evaluation form for PHY 711
in class on Friday or on your own at your leisure.

Final exam during finals week
12/11/2023-12/16/2023
(final grades due 12/20/2023 at noon)
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Presenter Notes
Presentation Notes
Schedule.


Physics Colloquium — December 7, 2023
4-5 PM in Olin 101

Nuclear Quantum Effects: Insights from
First-Principles Theory

In electronic structure theory, atomic nuclei are generally treated
as classical point charges. However, there is a growing realization
that the gquantum-mechanical nature of light atomic nuclei like
protons is essential for predicting certain properties. In recent
years, this so-called nuclear quantum effect (NQE) has become
an important topic in condensed matter physics and chemistry. In
this talk, | will discuss how we examine different aspects of NQE
by advancing first-principles electronic structure theory. | will first
focus on the use of the path integral approach with first-principles
molecular dynamics simulation based on density functional
theory (DFT) for examining the NQE in liquid water and ionic
solution. | will then discuss how multi-component DFT can be
used with the nuclear electronic orbital (NEO) method for
studying the coupled quantum dynamics of electrons and protons
in heterogeneous matter in the context of real-time
time-dependent DFT.

Jianhang Xu

Department of Physics
UNC Chapel Hill
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Comment on HW #28

Assigned: 11/17/2023  Due: 11/20/2023

Read Chapter 11 of Fetter and Walecka.

Ap—ly
1. L

A cylindrical solid material with cylindrical radius a and length L and thermal diffu-
sivity & has a time-dependent cylindrically symmetric temperature profile T'(r, z, t).
In these cylindrical coordinates, the material is contained within @ > r > 0 and
L > z > 0. In the absense of external heating, the temperature profile is is well-
deseribed by the equation of heat conduction

Y —xvtT.
"

Somehow for t < 0, the material is prepared so that its temperature profile is given
by
. 0 for >a andfor z>1L
T(r,2,t <0) = 0  adjor @
Acos(rz/L) for r <a andfor z< L.

Then, at t = 0 the cylindrical solid is placed in a thermally insulated container so
that its temperature is well-described by the boundary conditions

n-V7(r,z,t)=0

at all of its surfaces. Find an expression for the temperature profile of this system
T(r,zt) for t > 0.
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The diffusion (or heat conduction) equation for the
temperature profile 7'(r,?):

oT
o
For cylindrical coordinates -- T'(r,?) =T (r, ¢, z,t)

= xV°T

and the diffusion equation takes the form:

aT , O, ,t 2 2 2
(F(DZ )ZK 8—24‘18"‘ 12 az_l_az T(V,(D,Z,t)
ot or- ror r°oQp 0z




Partial differential equation:
oT (r,p,z,t 21 2 2
(r:0:2 ):K 8—2+— 2 12 0 —+ 82 T(r,@,z,t)
ot or- ror rop oz
Assume separable form:  T'(r,,z,t) = R(r)®(9)Z(z) f (t)
In this particular case, the ¢ dependence i1s trivial, so that it

is reasonable to assume that T'(r,@,z,t) =T (r,z,t) = R(r)Z(2) f (¢)

@T(r,z,t) B df (1)
Then PR R(r)Z(z) ”
: ) ’ ,1d d°2(z)
VT (r,z,t)=Z(2) f(t)[drz = drjR(rHR(r)f ()=



The separable form works best, when each

factor solves a differential eigenvalue problem.

Suppose A0, =—-Af(t) and dngz)

dt dz

=—a/(z2)

Then R(r) must solve the equation:

d> 1d
AR =x| —+—-—a |R
) [drz r dr ] )



Solution of ordinary differential equation:

Recall that the regular solution of the Bessel equation of order 0
1s a solution of the differential equation:

[d—2+li+lon(x):O

dx*  xdx

Therefore, R(r)=CJ,(ur) where C 1s a constant and

, A
W =—-a
K

More generally, multiple solutions x may be viable, in which case

the solution has the form R(r)=) C,J,(u,r).



Full general solution:

TZ | _)t

T(r,z,t)zZCnJo(ynr)cos A e’

2
7T

where A, = x| 1 tor

Somehow for t < (), the material is prepared so that its temperature profile is given

by
- 0 for r>a andjor z > L
vzt <0)=
I'(r,zt<0) { Acos(mz/L) for r<a }lllih 2 < L.

Then, at t = 0 the cylindrical solid is placed in a thermally insulated container so
that its temperature is well-described by the boundary conditions

n-V7T(r,z,t)=0

at all of its surfaces. Find an expression for the temperature profile of this system
T(r,zt) for t > 0.
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Finishing up --

2
I(r,z,t)=),C,Jy(u,r)cos (%) e with 4, = K[ﬂj +7z—2)

Satisfies the differential equation, but does not satisfy
boundary and initial conditions

Need to find i, and C .

For boundary value at » =a
dJO (/I’lnr)

R IS & Nvasma]
dJ,(x,) _ o

Define 0
dx
X,
M, =—
a
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Note that the functions J,(u r) form a set of orthogonal functions

over the range 0 <r <a.

d*> 1d

—+t——+ J, (. r)=0

PRI ﬂn] o (4,7) =

2

d—+1i+uij<umr> 0

dr*  rdr
1d d 1d d
rdr dr rdr dr

(ﬂfi - U, )Jo (1,7)J o (14,,7)
If 4 = u , then the equality is trivial. If 4 # u , the integrating

both sides of the equation 0 <7 < a implies that

[ dr v, (u,r)J, (1,7 =0
0



Full general solution:
Tz

T(r,z,t)= ZCnJO (u,r)cos (Tj e

2
where A, = K‘(,uj +7Z—2j

J‘dl" rJO (ll’lnr)
and where C, = A~

[ ar r; (u,r)
0




Back to discussion of fluids with the inclusion of viscosity --
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Equations for motion of non-viscous fluid --

Modified Newton-Euler equation in terms of fluid momentum:

,OV 3 PV, ¥
— QT JZ:, ( Gx ) = pf applicd — YD

3 0 pv,v
+ Z (5)6] )+Vp P fapplled

J=1 J

Fluid momentum:  pv

Stress tensor: T, =pvyv, + po,

" component of Newton-Euler equation:

0(pv,) , 0T _
ot +;@xj =P/



Presenter Notes
Presentation Notes
Here we recognize terms that have the  units of force/area and can be described as a stress tensor Tij.


Now consider the effects of viscosity

In terms of stress tensor:
1deal viscous

Tl] - ZJ +1, ij

1deal

ideal .
T _pvzv'_l_pé‘ij_]}i

As an example of a viscous effect, consider --

Newton's "law" of viscosity
F ov,

X

A f@y y

material dependent parameter
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Presenter Notes
Presentation Notes
The next step is to imagine that the additional effects of viscosity should/can be represented as a viscous stress tensor.     The example of sheer force suggests that the viscous stress tensor involves derivatives of the velocity of the fluid.


Effects of viscosity
Argue that viscosity 1s due to shear forces in a fluid of the form:

F drag avx

A oy

Formulate viscosity stress tensor with traceless and diagonal terms:

iscous 8 a 2
I ——n[ . Vf——akl(v-v)]—wk,(v-w

ox, Ox, 3 '

viscosity bulk (or dilational) viscosity

Total stress tensor: 7, = Tkl'ldeal 4 Tk;iscous
ideal

T,°" = pvv, + po,

ov, 8\/[ 2

ox ox, — §5k, (V - V)j — (0, (V - V)

Viscous _
1 —7] (
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Presenter Notes
Presentation Notes
Imagining the most general form of the viscous tensor, we consider all derivatives of all components of fluid velocity, separating out the terms with zero trace, with the remaining terms proportional to the divergence of the velocity and representing the “bulk” viscosity.


‘Effects of viscosity -- continued
Incorporating generalized stress tensor into Newton-Euler equations

o(pv;) <97,
ot +,Z:1: oy =P,
a(pvl.) 5(,0\/1-\/]) 0*v

Continuity equation

8—'0+Z3:a pv].):O

o 5 O,
Vector form (Navier-Stokes equation)
ov

—+(v-V)v=f —le +£Vzv+l(§+lnjV(V V)
5/ : P Jo, 3
Continuity equation

ap
V-(pv)=0
—+V-(pv)


Presenter Notes
Presentation Notes
Now we can write the fluid equations with the full stress tensor.    The continuity equation still applies.   The so-called Navier-Stokes equation summarizes the expected behavior of fluids in terms of the material dependent viscosity parameters eta and zera.


Newton-Euler equations for viscous fluids

Navier-Stokes equation

1
@—I—(V V)V f—le—I—anV—l- (§+ U]V(V-V)
ot P P p 3
Continuity condition
ap
+V-(pv)=0
= Vo (ov)

Typical viscosities at 20° C and 1 atm:

____Fluid | __np(m¥s) | n(Pas) _

Water 1.00 x 10 1x103
Air 14.9 x 106 0.018 x 103
Ethyl alcohol 1.52 x 10° 1.2x 103
Glycerine 1183 x 10 1490 x 103
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Presenter Notes
Presentation Notes
Here is a list of some typical values of the viscosity parameter eta.


More discussion of viscous effects in incompressible fluids
Stokes' analysis of viscous drag on a sphere of radius R

moving at speed u 1n medium with viscosity 77 :

F, = —77(672Ru)

“Derivation”
1. Consider the general effects of viscosity on fluid equations

2. Solve the linearized equations for the case of steady-state

flow of a sphere of radius R
3. Infer the drag force needed to maintain the steady-state flow

4. Note that solution is special to the sphere geometry.
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Presenter Notes
Presentation Notes
Changing to an analysis of  viscous flow as a drag force.


Additional effects of viscosity — allowing for changes in entropy
-- particularly in the case of sound waves in air

9 9,
p(p,s)=p,+ ( p) 5p+( pj s
op Os



Newton-Euler equations for viscous fluids

Navier-Stokes equation

%+(v V)v= f—%Vp+ZV V+p(§+;7ij(V-v)

Continuity condition

op
V. ~0
= V- (pv)



Newton-Euler equations for viscous fluids — effects on sound

Without viscosity terms:
ov 1 op

5+(V-V)V=f—;Vp 5+V-(pv)=0
Assume: v=0+0vVv f=0 p=p,+0p
op
P=p,+0p=Dp, +[—j Gp = py+cop
op ).
2
Linearized equations: 9oV _ —C—Vﬁp 9%p +p,V-(6v)=0
ot £ Ot

Let Ov=0v, k) op = Op, ke



Sound waves without viscosity -- continued

o5v 05p

Linearized equations: — =——V —+p,V-(0ov)=0
q o T P PR AN CA)

Let Sv=Jv, Sp=dp, ¢

2 2
@ _ _C_Vé‘p — 505Vo = C 5,00 Kk

ot Po Po
%+pov-(5v):o = —wdp, + pk-0v,=0
:>/7c2:a)—22 % _K-ov,
c o c

=»Pure longitudinal harmonic wave solutions



Newton-Euler equations for viscous fluids — effects on sound
Recall full equations:
Navier-Stokes equation

g—:+(v V)v= f—%Vp+ZV V+p(§’+;7ij(V-v)

Continuity condition

op
+V. =0
~ V- (pv)
Assume: v=0+0v f=0 p=p,+0p
p=p,+op= p0+cz5p+(apj oS
s ),

where ¢’ = (a_pj ‘ viscosity

op causes heat
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Newton-Euler equations for viscous fluids — effects on sound
Note that pressure now depends both on density and
entropy so that entropy must be coupled into the equations

6_VJF(V V)v= f—iVP+77VV+ (§+IUJV(V-V)
Yo,

ot p P 3
ap Os
+V-(pv)=0 T =k, VT
= V- (ov) pr—=k,
Assume: v=0+0Vv f=0 p=p,+p
pP=py,+op=p, +C’25,0+(apj Ss where ¢ = @
aS p 810 .
T=T,+6T=T,+| I 5p+(5_Tj S
5,0 ) 0s ),

§=S8,+O0s



Newton-Euler equations for viscous fluids —
linearized equations

a—V+(V V)v = f—le+77V V+— (§+IUJV(V-V)

ot p P P 3

:ﬁz—LV5p+ V25V+L(§+ ln)V(Vﬂv)
ot \,00 | P Po 3

2
! [Gpj v5p+(5pj Vost=—"Vép- pOEaTj Vs
Po |(\OP ), s ), Po ap ),

Digression -- from the first law of thermodynamics:

de=Tds+Ldp
o,

e8] - BRI A )




Newton-Euler equations for viscous fluids —
linearized equations

ap
V. =0
— tV-(pv)
00,
:>a—;0+p0 -(5V):O

oS
T—=kV°T
£ o1 th

005 _ Ky (8—Tj vass+| L | visp
ot p,,\\ Os op ).

Further relationships:

(8_Tj < Lo K = Ky
oS PC,
’ ‘ heat capacity at constant volume
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Newton-Euler equations for viscous fluids —
linearized equations

K c
= 005 _ YV O + [ oT V?0p | where y=-L
Ot T, \ op ). c,
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Newton-Euler equations for viscous fluids — effects on sound
Linearized equations (with the help of various

thermodynamic relationships):

2

@ —C—V5p—p0(aTj V5s+lV 5V+—(§+177j (V'5V)
or  p, op ), P Po 3
00p
——+p,V-(ov)=0
Py Lo ( )

K
@:7K’V25s+cp or Viép
ot T, \ op ),

Here: 7/—6— K= a?




Linearized hydrodynamic equations

2
@:—C—V@o—po(aTJ V5s+lV §V+—(§+ 177) (V'5V)
ot p, op ), Py Po\~ 3
00p
—+p,V-(0oVv)=0
Py Lo ( )
K

@:7K’V25s+cp (aTj Viép
ot I, \ op ),

It can be shown that

2
(a_Tj _1c p where El(a—Vj (thermal expansion)
o), pe, yAor),

Let ov=0v, e ) sp=dp, & Ss=55, M



Linearized hydrodynamic equations; plane wave
solutions:

2 T 2 . 2 . 1
osv, = S Poy 1P 5o TIK 5y —L(g +—77jk(k-5vo)
Po ¢y Po Lo 3
wop, — p, k-ov,=0
. 2
055, = —iyck’Ss, — P sy
Lo

In the absense of thermal expansion, £ =0

c’op,

. 2 .
WOV, = k - ik ov, —L(§+lnjk(k-5vo)

Po Po Po 3
wop, —p, k-ov,=0

wSs, = —iykk’Ss,

=» Entropy and mechanical modes are independent



Linearized hydrodynamic equations; full plane wave solutions:

2 T 2 . 2 . 1
osv, = S Poy 1P 5o TIK 5y —L(g +—77jk(k-5vo)
Po ¢y Po Lo 3
wop, — p, k-ov,=0
. 2
055, = —iyck’Ss, — P sy
Lo

Longitudinal solutions: (ov -k # 0):

2 2712
(a)z—czkz—kiaj (§n+§j]5p0—poz’f0k os, =0
0

P

ixfc’

Lo

k0, + (@ +iykk ) 5s, = 0



Linearized hydrodynamic equations; full plane wave solutions:

Longitudinal solutions: (ov-k # 0):

2 2712
[a)z—ck 2 4 1 K (3n+gjj5p0—p°ToﬁCk 5s, =0

Po ¢

p

. 2
KD oo, + (@+iyck?)Ss, =0

Po
Approximate solution: k=—+ixa
c
2 4 T 2 2
where o =~ a; (—77+§ +K°'Bw
2¢p, \ 3 2¢c

—ak- T, i (ﬁ-r—ct)

Op = 0p,e



Linearized hydrodynamic equations; full plane wave solutions:

WOV, =
pO Cp pO

wop, — p, k-ov,=0

. 2
055, = —iyck’Ss, — P sy
Lo

Transverse modes (ov-k =0):
op,=0 0s,=0

2 2
5'00k+T’BC 5Sk—mk ov, ——

A

§+77

j (k-6v,)
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