PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion of Lecture 5 — Chap. 3&6 in F&W

Lagrangian mechanics

1. Lagrange’s equations in the presence of velocity
dependent potentials — such as electromagnetic
interactions.

2. Effects of constraints
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Presenter Notes
Presentation Notes
This material follows your textbook in both Chapter 3 and Chapter 6.


Physics Colloquium Series

The originally scheduled colloguium for this week
has been rescheduled for December 7, 2023

In order to keep up the departmental good spirits, please join
Physics Reception in the Olin Lobby at 3:30 PM

W

WAKE FOREST
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Fri, 9/08/2023

Date F&W Topic HW

1 |Mon, 8/28/2023 Introduction and overview #1
2 \Wed, 8/30/2023 |Chap. 3(17) |Calculus of variation #2
3 |Fr, 9/01/2023 |Chap. 3(17) |Calculus of variation #3
4 Mon, 9/04/2023 |Chap. 3 Lagrangian equations of motion #4
5 |Wed, 9/06/2023 |Chap. 3 & 6 |Lagrangian equations of motion |#5
6

7

Mon, 9/11/2023
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Presenter Notes
Presentation Notes
Here is the updated schedule.   Note that HW 8 which will be covered in today’s lecture will be due on Wednesday.


.

PHY 711 -- Assignment #5

Assigned: 9/06/2023 Due: 9/11/2023

Continue reading Chapters 3 & 6 in Fetter & Walecka.

In class, we discussed two different examples of a time-independent vector potential A(r) that
describes a constant magnetic field of magnitude By directed along the z axis.

a. Find a third form for a vector potential A(r) for the same magnetic field.
b. Now write down the Lagrangian for this system and check whether you obtain a consistent
trajectory for a point particle of mass m compared with the results discussed in class.
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Homework problem due on Wednesday..


Previously derived form for the Lagrangian --

s Generalized coordinates :
. e

oU d oI oT
F-ma)-ds=-Y —038q_— ———6q. =0
( ma) S qU Z[a’t aq'g 8q ] qG

o

d oL OL
= D=4, =
>\ dtodq_ Oq

Note: Thisisonly true if



Presenter Notes
Presentation Notes
Form of derived Lagrangian  provided that the potential does not depend on velocity.


Generalized coordinates :
ds
\/. 9. ({xi })

Define - - Lagrangian: L=T7T-U

L=L(g, 14, }1)
d oL OL
_ma) = _Z[dt 04 8q jﬁqg =0

o

— Minimization integral : § = J. L qa {qa} )dt

=>»Hamilton’s principle from the ‘backwards”
application of the Euler-Lagrange equations to

Define -- Lagrangian: L=T-U

L=L1({g,}:{4,})
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Having shown that the Euler-Lagrangian equations are consistent with Newton’s equations of motion, we can then infer that the integral of the Lagrangian is optimized as is consistent with Hamilton’s principle.    


D
Summary —

Hamilton’s principle:
Given the Lagrangian function: L =L ({qa b4d, ) ,t) =T -U,
The physical trajectories of the generalized coordinates {% (t)}
are those which minimize the action: S = I L({q,}.{d,}.t)dt
Euler-Lagrange equations:

d oL oL d oL oL
Z — q.=0 —=foreach o: — — =0
>\ dt aqa oq dt 0q - oq

o o
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Recipe for Lagrangian mechanics.


.

Note: in “proof” of Hamilton'’s principle:

d OL OL
— =( fi L =1L . _T_U
[ dt aqg an j or ({QG }9 {qg }, t)
It was necessary to assume that :
dau

— does not contribute to the result.
dt 0q_

— How can we represent velocity -dependent forces?

Why do we need velocity dependent forces?

a. Friction is sometimes represented as a velocity
dependent force. (difficult to treat with Lagrangian
mechanics.)

b. Lorentz force on a moving charged particle in the
presence of a magnetic field.
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Important restriction.


Some details --

d oL OL
_ =0 for L=L g t,t)=T-U
iz 2 (t0.}- {00
It was necessary to assume that:
i&_U does not contribute to the result.
dt 0q_
This comes from D'Alembert's analysis which gave us:
(F-ma)-ds=0=— a—U5qG —Z d &.T _or 0q.,
> 0q_ —\dtoq. Oq_

d oT (T -U)
F-ma) ds=0=— _
(F-ma)-ds Z(dt o og ]jq“

o o

dor-U)_ar-u));
di 8q. oq. [T

while we want to use: 0 = —Z

o) o



Lorentz forces:
For particle of charge g in an electric field E(r,7) and magnetic field B(r,?):

Lorentz force: F = q(E +Lvx B)

x —component: F = q(Ex +1(vx B)x)
In this case, it is convenient to use cartesian coordinates
L= L(x,y,z,fc,j/,z',t) =7-U
Note: Here we are using

1 ) ) ) ) _
T‘zm(x ty +z ) cartesian coordinates for

d OL aLj convenience.
xX-component: —— =
(a’t ox Ox
oU d oU
Apparently: F =-— +
PPy e T T ax
Answer: U=q®(r,t) ql"-A(r,t)

c
_l@A(r,t)

where E(r,t)=-V®(r,¢) S
C

B(r,t)=VxA(r,t)
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Presentation Notes
While Lagrangian mechanics cannot treat all velocity dependent forces,    it is possible to extend the analysis for the case of  the Lorentz force.     This material is treated in Chapter 6, Section 33 of your textbook.      We are following the textbook’s units of cgs Gaussian units.


More details --

Consider: 0= —Z[jt 8(7(; _ 9 _ 8(7(; ) ]5%
95 q

o o

1
Suppose T = Em(a’cz + 37 +2°)

(d o(T -U) 8(T—U)j d . d (an oU
= 0= — = —mx — +—
dt  Ox Ox dt dt\ Ox Ox

= F - d(&Uj_aU

ox ) ox



Units for electromagnetic fields and forces

cgs Gaussian units -- (as used your textbook)

E and B fields as related to vector and scalar potentials:
1 0A(r,1)

c Ot
Corresponding Lagrangian potential:

E(r,t)=-VO(r,t)- B(r,t)=VxA(r,t)

U =q®(r,t)-Li-A(r,z)
C

Sl units --

E and B fields as related to vector and scalar potentials:
OA(r,1)

ot
Corresponding Lagrangian potential:
U=q®(r,t)—qr-A(r,t)
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E(r,t)=-V®(r,t)- B(r,/)=VxA(r,¢)



.

Lorentz forces, continued:

x —component of Lorentz force: F. = q(Ex + (V X B)x)

Suppose: U = qd)(r,t)—gi'-A(r,t)

c
Consider: F. = _oY + d U
Ox dt ox

~oU od(r, 1) q(.@Ax(r,t) .aAy(l'af)

. 04, (r,t))

—=— +=| X + +
ox 1 ox c ox d ox ox
6_(.] = —zAx(r,t)
ox C
ia_y __qdA(rz)_ _g(@Ax(r,t)X+ éAx(r,t)er an(1~,¢)2.+ 0A4_(r,1)
dt Ox c dt c ox oy 0z ot
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Presentation Notes
Very clever mathematicians figured out how to incorporate Lorentz  into the Lagrangian formalism.    Here we are assuming their result and showing that it is consistent.


S
Lorentz forces, continued:

0A (r,t )
U, o0(r,t) g xan(r,t)”, (r, )+Z.@Az(r,t)
Ox ox c Ox Ox ox )
\
dou _ ¢ GAx(r,t)).H an(r,z)y.+ 8Ax(r,t)z,+ 0A4_(r,¢)
dt Ox c Ox oy 0z ot )
7 _ou doUu
g Ox dt Ox
_ od(r, 1) e 04,(r,¢) 04,(r,1) L4 [ 04 (r.t) o4,(r,t)) qo4,(r,)
1 Ox c Y Ox oy c Ox oy c Ot
__ 00(r,1) qoA(rt) g 04, (r,)) o4,(r.1) 4 Z.( 04.(r,t) o4, (r,t)j
1 Ox c Ot c Y Ox oy c Ox 0z
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More derivations.



B
Some details on last step:

oU d U

F = +
} Ox dt Ox
oD (r,1) Ky 04, (r,t) 04, (r,t) Ny 04, (r,t) 04 (r,t)) g 04, (r1)
= — _ — —Z — —_—_
1 ox cy ox oy c ox oy c Ot
oD(r,t) ¢ an(r,t)+q (04, (r,t) 04, (r,¢) Ny 04, (r,t) 04, (r.t)
= — _——— D — _ _Z —_
1 Ox c Ot cy ox oy c ox 0z
Note that: E(r,t)=-VO(r,t) 1 OA(r.1)

P B(r,t)=VxA(r,t)

So that:

F,(r,t) =qu(r,t)+%( )’/Bz(r,t)—z'By(r,t)):qu(r,t)+%(v><B(r,t))x
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More derivations.



S
Lorentz forces, continued:

Summary of results (using cartesian coordinates)
L= L(x,y,z,)'c,j/,z',t) =7-U

T=im(i+y*+2)  U=q0(r,t)-Li A(r,)
C
where E(r,7)= —VCD(r,t)—laA(r’t) B(r,t)=VxA(r,t)
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Presentation Notes
Summary of results.


.

Example Lorentz force
L=Lim(i+77 +2°)- q(D(r,t)+%l" - A(r, 1)
Suppose E(r,1)=0, B(r,t)= B,z

A(r,t)=3B

L=1m(*+5 +2°)+

d OL

oL

dt Ox
d OL

Ox

oL

dt oy
d oL

Oy

oL

dt oz

Oz

=0

=0

=0

0(_yﬁ+x§’)

q . .
> — By (— %y + jx)
d q

— mx——2~RB
a’t( 2c Oyj

= — d (my+iB xj
dt 2c

:>imz':O
dt

2qc B,y=0

qu 0
2c
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Presentation Notes
Example for a  magnetic field in the z direction.


Example Lorentz force -- continued

LB (— sy +jx)

%(x+y—|—z) >

L=
d m)'c—iBOy = —B,y=0 :>mx—1Boy':O
dt 2¢C 2c c

ﬂw@+13ﬂ + L Bi=0 =mp+lBi=0
dt 2c 2c C

imz':O —=>mz=0
dt
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Presentation Notes
Finding the Euler-Lagrange equations.


Example Lorentz force -- continued

L=1m(# +57 +z‘2)+2iBO(—5cy+y'x)
C
mi=+LB
C
mj}z—gBoic
C
mz =0

Note that same equations are obtained

from direct application of Newton's laws :

mr :gi'xBoi

C
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Presentation Notes
Summary from previous slides.


B
Example Lorentz force -- continued

Evaluation of equations :

q

mi—=-B,j =0 %(t) =V, sin (%2t + ¢
my+130x=0 y(t):%cos(%t+¢)
C



Presenter Notes
Presentation Notes
We get the same motion for this case.


B
Example Lorentz force -- continued

N

Consider formulation with different Gauge: A (r) =—B,)X

q

L=5m (x +y°+z )——BO)'cy

c
i(mx_ﬁgoyj_o :mx—gBOj/:O
dt C C
D )+ B =0 —mp+LB5=0
dt c C
imz'zO —>mz =0
dt

Does it surprise you that the same equations of motion are
obtained with a different Gauge?


Presenter Notes
Presentation Notes
This is the same magnetic field, but an equivalent vector potential.


How do these two different forms of A correspond to the
same B?

B(r,t)=VxA(r,¢)
Consider A'(r,t) =A(r,t)+Vf(r,t)
Note that VxA(r,t)=VxA'(r,¢)

| A A
In our case, A(r, f)ZEBo (—yX+xy)

A'(r,t)=—B,yx
What is f (r,1)?



'S
Now consider formulation of motion with constraints --

Comments on generalized coordinates:

L=L({g, ®}L{d, Ot
d oL oL
dt 0. Oq

=0

(o}

Here we have assumed that the generalized coordinates
q, areindependent. Now consider the possibility that
the coordinates are related through constraint equations
of the form:

Lagrangian: L = L({qa (t)}, {q’a (1), t) Lagr_an.ge
Constraints: f, = f,({g, (1)},¢)=0 multipliers

d OL 8L Zl

dt aqa J 6QO'

Modified Euler - Lagrange equations :


Presenter Notes
Presentation Notes
Shifting topics, we now consider examples where the generalized coordinates are related by some constraints.


Some details --

Lagrangian: L = L({qa (1) }, {q’a (1)f, t)
Constraints: f, = f, ({g,(H)}t)=0

Modified Euler - Lagrange equations : — — 9
dt 0q,. Oq oq

o)

o,
doL_ol 5, ¥,
J o

This amounts to modifying our optimization problem --
0§=0 andforeachi: oOf =0

= oW =0(S + Z/Il. /,) =0, introducing the new constants 4.



Simple example:

L(u(t),u(t)) =L mu* + mgusin 0

y L(x,p,%,3) = mli + 37 )~ mgy
f(x,y)=sinf x+cosf y=0
Note that: u =xcosf — ysiné
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Presentation Notes
Here is a simple example of an inclined plane.    If we were so silly as to treat the x and y motions separately, we would have use a constraint equation as shown.


Case I:
L(u(t),u(t)) =L mu* + mgusin 6

d aL—ﬁL:Ozmii—mgsiné’:O
dt ou Ou
Case 2:

L(x,y,%,9) =tm(% + 37 ) —mgy
f(x,y)=smf x+cosf y=0

d@L_@L 6f =0=mx+ Asinf
dt ox Ox 8x

d@lj_ﬁL g =0=my+mg+ Acost
dt oy Oy 8y

sinf X +cosf y=0

= A =—mg cos { {E——

(cos@ i—sinf j) = gsinf

9/6/2023 PHY 711 Fall 2023 -- Lecture 5

= U =gsind

Which method would
you use to solve the
problem?

Case 1

Case 2

Force of constraint;
normal to incline

26
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Presentation Notes
In this case we see that the constraint is related to the normal force which can be considered as a force of constraint.


Rational for Lagrange multipliers

Recall Hamilton's principle:

SzTLG@JﬂL&LU»J%#

5som(daaw%%
dt 0q, 0q,
With constraints:  f, = f| ({% (1)}, t) =0

Variations oq_ are no longer independent.

of
5fj:0zzai5qa at each ¢

o)

— Add 0 to Euler-Lagrange equations in the form:

of .
>0, Y g,
J o qa


Presenter Notes
Presentation Notes
Here we  justify the use of Lagrange multipliers in a similar way that we used them when discussing the calculus of variation.


Euler-Lagrange equations with constraints:

Lagrangian: L = L({qa (1) }, {q’a (1)f, t)
Constraints: f, = f, ({qa (t)}, t) =0

. . L L
Modified Euler - Lagrange equations: d oL _ ¢ + Z

atog, oq. “<oq.

Example:
Lagrangian: L = %m(2 +r26° )+ mgr cos 0
Constraints: f =r—£=0

mg
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Presentation Notes
Another example of constrained motion.


Example continued:

Lagrangian: L = m('2+r292)+mgrcos6

L
2

Constraints: f =r—(=0

%m?—mr@z—mgcosé’Jrl:O

imrzé’ +mgrsinf =0
dt

r=0=r r=>4
— 0 :—%sinﬁ

— A=mlO*+mgcosh

9/6/2023 PHY 711 Fall 2023 -- Lecture 5
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Continued analysis of pendulum motion


Another example:
PRI, A LA,

Lagrangian: L=1m/; +1m 05 +mgl +m,gl,
Constraints: f=/,+(,—(=0

_ d .
1B —ml, —mo+A=0
B ;I T g 18
| y .
1.“" I | %mzﬁz—m2g+/120
:= 1 Figure 19.1 Atwuud':ml:hint.kl_l_.éz:():zl_'_zz
NP 2mm, o
m, +m,
= =
m, +m,
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Example of Atwood’s machine with two masses and a pulley.
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