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Notes for Lecture 10: Rigid bodies —
Chap. 5 (F &W)

. Rigid body motion
. Notion of the center of mass
. Moment of inertia tensor

. Torque free motion
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Topic HW

1 Mon, 8/26/2024 Introduction and overview #1
2 \Wed, 8/28/2024 |Chap. 3(17) Calculus of variation #2
3 |Fri, 8/30/2024 |Chap. 3(17)|Calculus of variation #3
4 Mon, 9/02/2024 Chap. 3 Lagrangian equations of motion #4
5 Wed, 9/04/2024 |Chap. 3 & 6 |Lagrangian equations of motion #5
6 [Fri, 9/06/2024 |Chap. 3 & 6|Lagrangian equations of motion #6
7 |Mon, 9/09/2024 |Chap. 3 & 6 |Lagrangian to Hamiltonian formalism #/7
8 |Wed, 9/11/2024 |Chap. 3 & 6 Phase space #8
9 Fri, 9/13/2024 |Chap. 3 & 6 /Canonical Transformations

10 Mon, 9/16/2024 |Chap. 5 Dynamics of rigid bodies #9
11 Wed, 9/18/2024 |Chap. 5 Dynamics of rigid bodies

12 |Fri, 9/20/2024 |Chap. 5 Dynamics of rigid bodies

9/16/2024
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Presenter Notes
Presentation Notes
In this lecture we will consider the rotational motion of rigid bodies as presented in Chapter 5 of your textbook.


PHY 711 -- Assignment #9

Assigned: 9/16/2024 Due: 9/23/2024

Start reading Chapter 5 in Fetter & Walecka.

1. The figure above shows a rigid 3 atom molecule placed in the x-y plane as shown. Assume that the rigid bonds are
massless.
a. Find the moment of inertia tensor in the given coordinate system placed of mass M in terms of the atom masses, bond
lengths d, and angle a.
b. Find the principal moments moments of inertia /4, I»,/3 and the corresponding principal axes.

c. (Extra credit.) Find the principal moments and axes for a coordinate system with its origin placed at the center of mass
of the molecule.
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Up to now, we have considered the motions of idealized
point particles of mass m, moving along a trajectory with
generalized coordinates q_(f) according to Newton’s laws
and the Lagrangian and Hamiltonian equations of motion.
In this case, the kinetic energy of the particle depends only
on the squared velocity of the particle scaled by its mass
m.

For example, the kinetic energy of point mass m

expressed in Cartesian coordinates 1s

K:%m()'c2+j/2+z'2)

In studying rigid body motion, we consider a system with
distributed mass in which the motion is more complicated.



https://www.dkfindout.com/us/space/solar-system/earths-orbit/
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Knowing that the laws of physics are most conveniently applied
with in an inertial frame of reference, we will focus on how to
analyze rotations of a rigid body.
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Example of a rigid body system consisting of two
masses:

Center of mass:

X
zm

With rigid bodies, we should consider motion of the
body, both relative to an inertial frame of reference and
also internal motion of the body. For rigid body motion,
it is assumed that no deformations or vibrations occur. It
turns out that the details of the shape of the rigid body
can be characterized by the "moment of inertia tensor”
to describe the internal motion, while the overall motion

will also be important.




The physics of rigid body motion; body fixed frame vs
inertial frame; (using notation from Chapter 2 of F & W)

L

Figure 6.1 Transformation (o & rolating ©o-
ordinate system.

Let V be a general vector, e.g., the position of a particle. This vector can be

characterized by its components with respect to either orthonormal triad. Thus we
can write

V= Y Vo (6.1a)

V= §Vé (6.1b)
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Presenter Notes
Presentation Notes
Determining the relationship between the inertial and body frames.


Comparison of analysis in “inertial frame” versus
“non-inertial frame”

Denote by &’ a fixed coordinate system

Denote by ¢, a moving coordinate system
3

3
For an arbitrary vector Vi V=)V’ => V¢

I
i=1 [

dV AV AV, <, de
) Ty

=1
3

Detfine: (ﬂj Ezﬂé
body '

3 A
dt inertial dt body i=1 dt



Presenter Notes
Presentation Notes
Recall our previous discussion of rotating frames of reference.


Properties of the frame motion (rotation):

de e.
A

de. de, = dOe,
dé. = —dee,
= de=dOxe
de dO .
ar dr

. do,
> & T _pxe

dt

() ntie) oo (2] TNE

9/16/2024 PHY 711 Fall 2024-- Lecture 10 9


Presenter Notes
Presentation Notes
Consider an infinitesimal rotation.


3 A
dt inertial dt body i=1 d [

)l
— =| — +oxV
dt inertial dt body

Effects on acceleration:

(i) o\ o
—— =||— +@X%x | — +oxV
dt dt inertial dt body dt body

2 2
(d Yj =(d YJ +2wx(ﬂJ +d—me+(y)><(x)><V
dt inertial dt body dt body dt



Presenter Notes
Presentation Notes
Rotational acceleration.


Kinetic energy of rigid body,

rotating at angular velocity ®

( dr j r
— = +@®Xr
dt inertial body

=0 for rigid body

r=3gmy=Ygm o)
=3 mloxr, Hoxr, )
=Xy mle-o), n)-(, o]
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Presenter Notes
Presentation Notes
For a rigid body, internal motions are negligible.


S S

p
1 .
=—m-1-o
2
Moment of 1nertia tensor:
I=>m, (lrp2 — rprp) (dyad notation)
Matrix notation :
(Ixx [xy Ixz |
I=|1/ i ] Vi .
]Zx ] [ZZ /

[ _Zmp(5ljrp _rr)
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Presenter Notes
Presentation Notes
It is convenient to group terms that depend on the body geometry – leading to the definition of the moment of inertia tensor.


Moment of 1nertia tensor:

I=>m, (lrp2 - rprp) (dyad notation)
P

Note: For a given object and a given coordinate system,

one can find the moment of inertia matrix
Z

Matrix notation :

(]xx ]xy [xz\
I=\7, [, [,
I 1

\ " Zx zy zz )

I
]ij EZ””p(@’”; _rpirpj)
p

shutterstock.com = 497456917

X
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Moment of 1inertia in

original coordinates

( ]xx [ xy [ Xz \
=7, 1, I,
I, I, 1

zy zz )

\ zZX
I..Ezm (5..r2—r.r.)
ij r\Yii'p pi' pj
p

shutter ek com - 497456917

X x’

Moment of 1nertia in principal axes (x’,y’,z’)

(I, 0 0
I=|0 I, O
0 04
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Angular momentum of rigid body:

( dr j ( r
— = +@Xr
dt inertial d ody

=0 for rigid body

> (%jinertial = Vinertiar — QXTI r — l‘p
L:er x(mpvp)=2mprp x(mxrp)
p p
:Zmp ((n re -, (m-rp)):f-m
p

where I= Zmp (lrp2 —rprp)
p
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Presenter Notes
Presentation Notes
The angular momentum can also be calculated.


An example with 4 point masses and massless rigid bonds

- 2
IEZmP(lrj—rprp) R12:R22:R32=Rj=3%
P
2
=(—a/2,—a/2,a/2 A" [ A A AN, A A
Ry =( 47 ) R1R1:T(_x_y+z)(_x_y+
2m
R,=(a/2,a/2,a/2)
2m, y
=(—a/2,a/2,—a/2)
p R, (3 _% 0)
m ) — 21 _1
R,=(a/2,-a/2,-a/2) I'=ma 2 3 0
L0 0 3,
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Example continued -- I

Zmp (lrp2 -y, )
p

R1=(—afAZ,—af2,al2)

Z
2m
R2=(a!2,312,3f2)
2m,y ( 3 _% O\
=(—a/ 2,3/ 29_312)
m & I:ma2 _% 3 0
m M
R4=(af2,—3f2a_a}'2) \ O O 3)
[lzgmaz Vi = %(f(—f’)
Principal moments: jzzgmaz v, = %(Xﬂ’)

2 A
I, =3ma" v,=1Z
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Z Example:

C
>y
|
\ b
Moment of 1nertia tensor :
X 4 2 2 \
%(b +c ) —ab —Jac
I=M —ab %(a2+cz) —+bc
| —ac —+bc %(a2+b2)/
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Presenter Notes
Presentation Notes
Consider a simple rectangular solid with a coordinate system at the edge of the system.


Properties of moment of inertia tensor:
» Symmetric matrix =»real eigenvalues /,,/,,1;
> =»orthogonal eigenvectors

Ie=1¢e i=1,23

Moment of 1inertia tensor :

/%(b2+02) —ab —Llge )
I=M —ab T a’+c’ —+bc
L —ac —+bc %(a2+b2)j



Presenter Notes
Presentation Notes
The moment of inertia tensor in matrix form is a symmetric matrix and therefore can be diagonalized.   The eigenvalues are known as principal moments of inertia and the eigenvectors are known as principal axes.


Chan

Z
A

ging origin of rotation
: ]yzzmp(§ﬁr;_rpirpj)
p

Z

- 12 0 ' )
]y—zmp(5zy"’p Popi T
p

"
rp—rp+R

Define the center of mass:

2mE,  2mr,
p — P

I'. =

y

9/16/2024

r — =
CM
Em M
P
P

I, +M(R*S, —RR, )+ M(2ry, ‘RS, —re,R, = Rieyy )

y

PHY 711 Fall 2024-- Lecture 10 20


Presenter Notes
Presentation Notes
Here we consider what happens when we evaluate the moment of inertia tensor about a different origin.   In this case, the new origin  happens to be at the center of mass.


.

I'y=1,+M(R*5, - RR, )+ M(2rs, RS, —reyiR, — Rircyy )

9/16/2024

_ S bo A
Suppose that R=—4X—-2y—57
and r,, = —R
2
I',=1,-M(R5,~RR,)
>y %(b2 + cz) —Lab —Lac
I'=M| —<ab %(a2 +c2) —+bc
——ac —+bc %(az +b2)
%(b2 +cz) —Lab —ac
- M| —;ab %(az + cz) —+bc
—<ac —+bc %(a2 +b2)
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Presenter Notes
Presentation Notes
Some details.


Note: This is a special case;
changing the center of rotation
does not necessarily result in a
diagonal I’

9/16/2024

\

>y
(b2 +c2) 0 0
%(ax2 +02) 0
0 0 L(a* +b7)
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Presenter Notes
Presentation Notes
When the dust clears for this case.     Note that I’ happens to be diagonal already,       however it is not generally true that shifting the origin for the moment of inertia would result in a diagonal matrix.


Descriptions of rotation about a given origin

For general coordinate system

1
Tz—Z]ija)l.a)j
25

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor :

e=1Ié i=123

1

o §

n~~ AN

l
= w,€,+0,€,+w,€,

D

=T :%21@,—2
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Presenter Notes
Presentation Notes
In the next slides we will focus on the fact that each rigid body has 3 principal axes and 3 moments of inertia for a given origin.     It is often convenient to use that coordinate system to analyze rigid body motion.


.

Descriptions of rotation about a given origin -- continued
Time rate of change of angular momentum

%)
T texL
di \ dt ),,

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor:


Presenter Notes
Presentation Notes
Here we consider the angular moment expressed in the diagonalized body fixed frame of reference.


S
Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL [ dL
dr (E
is very difficult to solve directly in the body fixed frame.

j +oxL="1
body

For T = 0 we can solve the Euler equations :

dL ~ A ~ A ~ A ~ o~ A
— = 1,0,8,+1,0,8,+1,0,8,+@,0,(1, — I, ,

"'5357)1([1 _[3)é2+515)2([2 _]1)é3: 0


Presenter Notes
Presentation Notes
While it is very difficult to express torque in this reference frame, we can readily solve problems with zero torque.


%Lorqueless Euler equations for rotation in body fixed frame:
1@, + @,0, (1, - 1,) =0
L&, + @0, (1, - 1,) =0
L&, +&d,(1,-1,)=0
= Solution for symmetric object with 7, = /;:
1@, +@,6, (I, —1,)=0
L&, +@,0, (1, —1,)=0

[0, =0 —> w, = (constant) .
I —] W, = —C()2Q

Define: Q=ao, >— o
I, w, = @,



Presenter Notes
Presentation Notes
For the general system with three distinct moment of inertia, the solutions are difficult, but simplifications occur when two moments are the same, in this I1=I2.


Solution of Euler equations for symmetric object continued

@, = —®,L @, = @,
! 3 / 1
Il
Solution: @, (1) = Acos(L2t + @)
@, (t) = Asin(Q2 + @)

~/

@,(t) = @, (constant)
= 1211.553 = l11/12 + 113532
2 2

L=1we+1,0.e,+1,0,e,
=1, A(cos(Qz + @&, +sin(Qr + @&, )+ 1,@,6,

where Q = @,

l


Presenter Notes
Presentation Notes
Time dependence of the symmetric top in free space


%Lorqueless Euler equations for rotation in body fixed frame:
1,6, + @,0, (I, = 1,) =0
L&, + @6, (1, - 1,)=0

L, +&@,(1,—1,)=0
= Solution for asymmetric object: [, # [, # [:

L&, +@,0,(1,—1,)=0
Lo, +@,6,(1,—1,)=0

Lé, + @@, (I, -1,)=0

Suppose: @, ~0 Define: Q, = o,

Define: Q, = @,



Presenter Notes
Presentation Notes
Now consider the more general case.


Euler equations for rotation in body fixed frame:
[151 T @253(13 _]2): 0
L, +a,w,(1, —1,)=0

]353 +a~51@2(]2 _]1):()

Solution for asymmetric object I, = 1, # [:

Approximate solution --
- 1 —1,

Suppose: @, =0 Define: Q, = @, 7
1

]3_]1
[2

Define: Q, = o,


Presenter Notes
Presentation Notes
Reasonable approximations.


Euler equations for asymmetric object continued
1,é&, + &,0, (I, 1,)=0
Lé, +&,6,(1,-1,)=0
Lo, +&@,(1,-1,)=0
ARY A

If @, ~0, Define: Q, = 0)3]— Q, = o,
1

w, = —,, w, =L2,,

If Q, and Q, are both positive or both negative:

o, (1)~ A cos(w/QIQQt + gp)
, (1) = A\/% sin(w/Qlﬂzt + ga)
1

= If Q, and (2, have opposite signs, solution 1s unstable.


Presenter Notes
Presentation Notes
We see that there are conditions that allow stability for this system,.   --- to be continued.
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