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9/18/2024

PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 11: Rigid bodies —
Chap. 5 (F &W)

More about moment of inertia tensor
Torque free motion

Digression on matrix diagonalization
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9/18/2024

George Holzwarth
Memorial Biophysics

Lecture

Something's wrong in the cellular
neighborhood: the biophysics of how cells
respond to nearby wounds

When a layer of epithelial cells is injured, surrounding
cells respond in a distance-dependent manner to reseal
the wound. So, how do the surrounding cells “know”
that there is a wound nearby, i.e., that something is
wrong in the cellular neighborhood? The earliest
response is conserved across a wide range of
organisms, including both plants and animals, and that
response is a dramatic increase in cytosolic calcium
concentrations. We have investigated this process in
fruit flies using fast and reproducible laser wounds. Our
results show that this increase occurs quickly - calcium
floods into damaged cells within tens of milliseconds,
moves into adjacent cells over ~20 s, and appears in a
much larger set of surrounding cells via a delayed
second expansion over 40-300 s - but calcium is
nonetheless a reporter: cells must detect wounds even
earlier. We will discuss how measurements of laser-
tissue interactions can be combined with quantitative
image analysis and the genetic tools available n terms of
its biophysical and biochemical mechanisms. We will
discuss the experimental evidence and develop a
corresponding computational model that matches
experimental observations, tests the plausibility of
hypothesized mechanisms, and makes experimentally
testable predictions. We will then discuss how these
early signals relate to subsequent cell behaviors such as
cell-cell fusion, cell migration into the wounded area,
and the re-establishment of epithelial tension. This
work supported by NIH Grant 1RO1IGM130130.
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Professor M. Shane
Hutson

Vanderbilt University

Reception 3:30
Olin Lobby

Colloquium 4:00
Olin 101
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Topic HW
1 |Mon, 8/26/2024 Introduction and overview #1
2 Wed, 8/28/2024 |Chap. 3(17)|Calculus of variation #2
3 |Fri, 8/30/2024 |Chap. 3(17)|Calculus of variation #3
4 Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
9 |Wed, 9/04/2024 |Chap. 3 & 6 |Lagrangian equations of motion #9
6 |Fri, 9/06/2024 |Chap. 3 & 6 |Lagrangian equations of motion #6
7 |Mon, 9/09/2024 |Chap. 3 & 6 |Lagrangian to Hamiltonian formalism [#7
8 |Wed, 9/11/2024 |Chap. 3 & 6 |Phase space #8
9 [Fri, 9/13/2024 |Chap. 3 & 6 |Canonical Transformations
10 |Mon, 9/16/2024 |Chap. 5 Dynamics of rigid bodies #9
11 |Wed, 9/18/2024 |Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024 |Chap. 5 Dynamics of rigid bodies
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Presenter Notes
Presentation Notes
In this lecture we will consider the rotational motion of rigid bodies as presented in Chapter 5 of your textbook.


PHY 711 — Assignment #10
Assigned: 09/18/2024  Due: 09/23/2024

The material for this exercise is covered in the lecture notes and in Chapters 5 of Fetter and
Walecka.

1. Consider a matrix representing the moment of inertia of a system having the form

A B 0
I=| B C 0
0 0 D

where A, B, C, D are all real values. A related moment of inertia matrix I’ can be found from
a transformation matrix R, where

I'=RIR™".

Suppose the transformation matrix R has the form

cosf sinf 0
R= | —sinf cosf 0
0 0 1

where 6 is a real angle.

(a) Find the form of the matrix I” as function of the angle 6.
(b) For what value of ¢ is matrix I’ diagonal?

(c¢) For the value of # found in part (b), determine the eigenvalues and eigenvectors of the
moment of inertia matrix for this system
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Moment of 1nertia tensor:

I=>m, (lrp2 - rprp) (dyad notation)
P

Note: For a given object and a given coordinate system,

one can find the moment of inertia matrix
Z

Matrix notation :

(]xx ]xy [xz\
I=\7, [, [,
I 1

\ " Zx zy zz )

I
]ij EZ””p(@’”; _rpirpj)
p

shutterstock.com = 497456917

X
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Moment of 1inertia in

original coordinates

( ]xx [ xy [ Xz \
=7, 1, I,
I, I, 1

zy zz )

\ zZX
I..Ezm (5..r2—r.r.)
ij r\Yii'p pi' pj
p

shutter ek com - 497456917

X x’

Moment of 1nertia in principal axes (x’,y’,z’)

(I, 0 0
I=|0 I, O
0 04
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Z Example:

C
>y
|
\ b
Moment of 1nertia tensor :
X 4 2 2 \
%(b +c ) —ab —Jac
I=M —ab %(a2+cz) —+bc
| —ac —+bc %(a2+b2)/
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Presenter Notes
Presentation Notes
Consider a simple rectangular solid with a coordinate system at the edge of the system.


Properties of moment of inertia tensor:
» Symmetric matrix =»real eigenvalues /,,/,,1;
> =»orthogonal eigenvectors

Ie=1¢e i=1,23

Moment of 1inertia tensor :

/%(b2+02) —ab —Llge )
I=M —ab T a’+c’ —+bc
L —ac —+bc %(a2+b2)j



Presenter Notes
Presentation Notes
The moment of inertia tensor in matrix form is a symmetric matrix and therefore can be diagonalized.   The eigenvalues are known as principal moments of inertia and the eigenvectors are known as principal axes.


Changing origin of rotation

_ 2
Az 2’ ]ij :Zmp(§ﬁrp rpirpj)
p

- 12 0 ' )
]y—zmp(5zy"’p Popi T
p

"
rp—rp+R

Define the center of mass:
D m,;x, ) mr,
P — P

r — =
CM
Em M
P
P

I',=1,+M(R*6, - RR,)+ M(2r., -RS, —reuR, — Ricyy)

ij ij

9/18/2024 PHY 711 Fall 2024-- Lecture 11


Presenter Notes
Presentation Notes
Here we consider what happens when we evaluate the moment of inertia tensor about a different origin.   In this case, the new origin  happens to be at the center of mass.


I'y=1,+M(R*5, - RR, )+ M(2rs, RS, —reyiR, — Rircyy )

9/18/2024

_ a o b c 5
Suppose that R=—4X—-2y—57
and r,, = —R
I''=1,-M(R*5,~RR))
ij ij ij it
~y %(b2 - cz) —Lab —Lac
I'=M| —<ab %(a2 +c2) —+bc
——ac —+bc %(az +b2)
%(b2 +cz) —~ab —ac
- M| —;ab %(az + cz) —+bc
—Lac —Lpc La® +b?
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Presenter Notes
Presentation Notes
Some details.


Note that changing origin of
coordinate system changes
A Z moment of inertia tensor.

Note: This is a special case;
changing the center of rotation
—~ Y does not necessarily result in a

diagonal I’
(67 +¢?) 0 0 )
%(az +cz) 0
0 0 L(a*+07),
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Presenter Notes
Presentation Notes
When the dust clears for this case.     Note that I’ happens to be diagonal already,       however it is not generally true that shifting the origin for the moment of inertia would result in a diagonal matrix.


Descriptions of rotation about a given origin

For general coordinate system

1
Tz—Z]ija)l.a)j
25

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor :

e=1Ié i=123

1

o §

n~~ AN

l
= w,€,+0,€,+w,€,

D

=T :%21@,—2
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Presenter Notes
Presentation Notes
In the next slides we will focus on the fact that each rigid body has 3 principal axes and 3 moments of inertia for a given origin.     It is often convenient to use that coordinate system to analyze rigid body motion.


.

Descriptions of rotation about a given origin -- continued
Time rate of change of angular momentum

%)
T texL
di \ dt ),,

For (body fixed) coordinate system that diagonalizes

moment of 1nertia tensor:


Presenter Notes
Presentation Notes
Here we consider the angular moment expressed in the diagonalized body fixed frame of reference.


S
Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL [ dL
dr (E
is very difficult to solve directly in the body fixed frame.

j +oxL="1
body

For T = 0 we can solve the Euler equations :

dL ~ A ~ A ~ A ~ o~ A
— = 1,0,8,+1,0,8,+1,0,8,+@,0,(1, — I, ,

"'5357)1([1 _[3)é2+515)2([2 _]1)é3: 0


Presenter Notes
Presentation Notes
While it is very difficult to express torque in this reference frame, we can readily solve problems with zero torque.


%Lorqueless Euler equations for rotation in body fixed frame:
1@, + @,0, (1, - 1,) =0
L&, + @0, (1, - 1,) =0
L&, +&d,(1,-1,)=0
= Solution for symmetric object with 7, = /;:
1@, +@,6, (I, —1,)=0
L&, +@,0, (1, —1,)=0

[0, =0 —> w, = (constant) .
I —] W, = —C()2Q

Define: Q=ao, >— o
I, w, = @,



Presenter Notes
Presentation Notes
For the general system with three distinct moment of inertia, the solutions are difficult, but simplifications occur when two moments are the same, in this I1=I2.


Solution of Euler equations for symmetric object continued

@, = —®,L @, = @,
! 3 / 1
Il
Solution: @, (1) = Acos(L2t + @)
@, (t) = Asin(Q2 + @)

~/

@,(t) = @, (constant)
= 1211.553 = l11/12 + 113532
2 2

L=1we+1,0.e,+1,0,e,
=1, A(cos(Qz + @&, +sin(Qr + @&, )+ 1,@,6,

where Q = @,

l


Presenter Notes
Presentation Notes
Time dependence of the symmetric top in free space


Example symmetric top --
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%Lorqueless Euler equations for rotation in body fixed frame:
1,6, + @,0, (I, = 1,) =0
L&, + @6, (1, - 1,)=0

L, +&@,(1,—1,)=0
= Solution for asymmetric object: [, # [, # [:

L&, +@,0,(1,—1,)=0
Lo, +@,6,(1,—1,)=0

Lé, + @@, (I, -1,)=0

Suppose: @, ~0 Define: Q, = o,

Define: Q, = @,



Presenter Notes
Presentation Notes
Now consider the more general case.


Euler equations for rotation in body fixed frame:
[151 T @253(13 _]2): 0
L, +a,w,(1, —1,)=0

]353 +a~51@2(]2 _]1):()

Solution for asymmetric object I, = 1, # [:

Approximate solution --
- 1 —1,

Suppose: @, =0 Define: Q, = @, 7
1

]3_]1
[2

Define: Q, = o,


Presenter Notes
Presentation Notes
Reasonable approximations.


Euler equations for asymmetric object continued
1,é&, + &,0, (I, 1,)=0
Lé, +&,6,(1,-1,)=0
Lo, +&@,(1,-1,)=0
ARY A

If @, ~0, Define: Q, = 0)3]— Q, = o,
1

w, = —,, w, =L2,,

If Q, and Q, are both positive or both negative:

o, (1)~ A cos(w/QIQQt + gp)
, (1) = A\/% sin(w/Qlﬂzt + ga)
1

= If Q, and (2, have opposite signs, solution 1s unstable.


Presenter Notes
Presentation Notes
We see that there are conditions that allow stability for this system,.   --- to be continued.


.

Summary of previous results
describing rigid bodies rotating
about a fixed origin @

dr
— =—WXr
dt inertial

Kinetic energy: T = Zp:%mp"; = Zp:%mp (‘mxrp‘)
1
:ngP(mxrp)-(mxrp)
P
1
=25 [(w-m)(rp °rp)_(rp °m)2}

1 N szmP(lrj—rprp)

P
9/18/2024 2 PHY 711 Fall 2024-- Lecture 11
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Presenter Notes
Presentation Notes
Review of notions of rigid body motion.


Moment of inertia tensor
Matrix notation:

/[xx [xy [xz\
=1, 1, I.| 1,=) m,(8r —r.r,)
Klzx ]zy ]ZZ/ g
For general coordinate system: 7T =—) [.w.o,
2 - y-ittJ
For (body fixed) coordinate system that diagonalizes
moment of inertia tensor: I1-é =7¢ i=1,2,3
A 1 -
0=0¢+0,e,+ae, =T=—> I’

25


Presenter Notes
Presentation Notes
In general there is a symmetric tensor which defines the moment of inertia.    By rotating the coordinates about a fixed origin we can find the matrix in diagonal form.


®
Descriptions of rotation about a given origin -- continued

Note that the torque equation
dL ( dL
dr (E
1s very difficult to solve directly 1n the body fixed frame.

j +oxL=1
body

In principle,

I\)S z
t
(98}
—~~
S~
|
o
~"
o>
_I_
l

35)1 (]1 _]3)é2+a31a~)2 (]2 _[1)é3

]16(31 + @2033 (]3 — ]2 ) = 7;  Only useful if we can express 7
in the body fixed coordinate frame.

3 ) =0 Next time, Euler angles will come

Lo,

] )=  totherescue.
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Presenter Notes
Presentation Notes
When there is zero torque acting on the system, the angular velocity components are coupled through these Euler equations.


Digression on matrix diagonalization

Moment of 1nertia tensor Moment of 1nertia tensor

in original coordinates in principal axis system

(1, I, I.) (I, 0 0
i=\7, 1, I, i=lo 1, 0
f= Ly s 0 0 I,
fy=2m (8,1 =rry) & &, @

\ 4

Note that / ;= Ji i

=»Eigenvalues of a symmetric matrix are real and
eigenvectors are orthogonal.



Finding eigenvalues/eigenvectors by hand for a general matrix M --

My“ = 2%y°
(M—xl“l)y“ =0
‘M—/I“I

= det (M — /1“1) =0 = polynomial for solutions 4“

For each @ and A“ solve for the eigenvector coefficients y*

Example
(4 —J4aB 0
M=|-J4B 2B —J4B
0 4B 4|
A-2° —J4B 0
M-l =|-V4B 2B-i" —JAB
0  —JAB 4-2°

= A" (A“ = 4)(A" —(4+2B))=0



Example -- continued

\M—A“I

A
— AB
0

Normalized eigenvector:

A-1°
— AB
0

— AB

2B

— AB

= 1" (A“ - 4)(A“ —(4+2B))

— AB 0
2B—AY —AB
—AB A-1°
Solving for eigenvector corresponding to A* = A' =0
(B C
—JA4B y; =0 = yf = yf
1 yy yy
A Y: )
1 (JB/ 4
“ sl
_|_
B/ A

B

A



Digression on matrices -- continued

Eigenvalues of a matrix are “invariant” under a similarity
transformation

Eigenvalue properties of matrix: My, =4y,

Transformed matrix: M'y', =4y,

If M'=SMS™ then A' =4, andS7y' =y,
Proof SMSy', =4y,

M(S7y' )= 2 (S7Y")

This means that if a matrix is “similar” to a Hermitian matrix,
it has the same eigenvalues. The corresponding
eigenvectors of M and M’ are not the same but y, =S7'y'



Note, here we have defined S as a transformation
matrix (often called a similarity transformation matrix)

Sometimes, the similarity transformation 1s also unitary so that
Uu'=U"
Example for 2x2 case --

U_(cos@ sin@} UI_UH_(COSQ —sinﬁj

—sin@ cos@ sin@ cos@

How can you find a unitary transformation that also
diagonalizes a matrix?

A B A 0
Example -- M= M'=
B C 0 A



Example -- MZ[A Bj M':(ﬂ‘ O]

B C 0 A4,
i cosf sind
M'=UMU for U = ,
—sinéf cosd

M- Acos’ @+ Csin® @+ Bsin20 —Bcos20—1(C— A)sin 26
~Bcos20—-L1(C—A4)sin260 Asin” @+ C cos’ 6 — Bsin20

2

C-4
= A, = Acos’ 6+ Csin® 0 + Bsin260
= A, = Asin” @+ C cos” § — Bsin20

— choose €= %tan‘1 (_2—B)

Note that this “trick” is special for 2x2 matrices, but numerical
extensions based on the trick are possible.



Note that transformations using unitary matrices are often
convenient and they can be easily constructed from the
eigenvalues of a matrix.

Suppose you have an N x N matrix M and find all N eigenvalues/vectors:

My“ = A1%y® orthonormalized so that <y“

y’)

:5aﬂ

Now construct an N x N matrix U by listing the eigenvector columns:

|
34

|
Y

-
Il

1

Also by construction U 'MU =

YN

2
Vi
Vs

2
VN

»
Vs

yu

U—l

1 1
Vi V>
2% 2%
Vi Y

A e
A0

0 A

0 O

1*
YN

N*
YN

N*
YN

= by construction U'U =1
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