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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF  in Olin 103

Notes for Lecture 13 – Chap. 1 (F &W)

Scattering analysis
1. Review of particle interactions

2. Two particles interacting with a central potential 

3. Conservation of energy and angular momentum

4. Definition of differential scattering cross section

5. Notion of “impact” parameter and its role in 
calculating the differential cross section.

Presenter Notes
Presentation Notes
In this lecture, we introduce the concept of scattering theory .h
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Introduction to  the analysis of the energy and forces 
between two particles –

This treatment can be formulated with Lagrangians 
and Hamiltonians, but we will directly use the 
Newtonian approach for now..
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Classical mechanics of a conservative 2-particle system.
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First consider fundamental picture of particle interactions

For this discussion, we will assume that V(r)=V(r) (a central 
potential). 
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Presenter Notes
Presentation Notes
First consider the basic particle interactions which govern their motion.
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For a central potential V(r)=V(r), angular momentum is conserved.
For the moment we also make the simplifying assumption that 
m2>>m1 so that particle 1 dominates the motion.
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Energy is conserved:

Presenter Notes
Presentation Notes
The last assumption is being made for convenience.    We will consider the center of mass and relative motion much more carefully later.
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Typical two-particle interactions –
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Presenter Notes
Presentation Notes
These represent typical  particle interactions.    Only the Coulomb or gravitational forms are precisely found in nature.    The others serve as convenient models.
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More details of two particle interaction potentials

( ) ( ) ( )1 2 1 2Central potential:       V V V r=− − ≡r rr r

This means that the interaction only depends on the 
distance between the particles and not on the angle 
between them.   This would typically be true of the 
particles are infinitesimal points without any internal 
structure such as two infinitesimal charged particles or 
two infinitesimal masses separated by a distance r: 

( ) KV r
r

=

Example – Interaction between a proton and an 
electron.  Note we are treating the interactions with 
classical mechanics; in some cases, quantum effects 
are non-trivial.
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Other examples of central potentials --
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Example

Two marbles

Two Ar atoms

Note – not all systems are described by this form.   Some 
counter examples:

1. Molecules (internal degrees of freedom)
2. Systems with more than two particles such as 

crystals 



9/23/2024 PHY 711  Fall 2024 -- Lecture 13 10

Representative plot of V(r)

E/V0V
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)/V
0

Distances of closest approach

Note that particles are 
not bound; can reach 
infinite separation

Presenter Notes
Presentation Notes
Potential energy diagram showing important aspects of the particle trajectory.
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1 . 
The origin of our coordinate system is taken at the position of the target particle.
Here we are assuming that the target particle is stationary and m m≡

r(t1)
θ(t1)
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Conservation of energy:
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Some more details --
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Comments continued --
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What is the impact parameter?

Briefly, a convenient distance that depends on 
the conserved energy and angular momentum 
of the process.
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Which of the following are true for a particle moving in 
a central potential field:

a. The particle moves in a plane.
b. For any interparticle, potential the trajectory 

can be determined/calculated.
c. Only for a few special interparticle potential 

forms can the trajectory be determined.

Why should we care about this?
a. We shouldn’t really care.
b. It is only of academic interest
c. It is of academic interest but can be measured.
d. Many experiments can be analyzed in terms of the 

particle trajectory.

Presenter Notes
Presentation Notes
What do you think about these?
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Scattering theory: detector

Presenter Notes
Presentation Notes
This is the ideal configuration of a scattering experiment.
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Scattering theory: detector

Some reasons that scattering theory is useful:
1. It allows comparison between measurement and theory
2. The analysis depends on knowledge of the scattering 

particles when they are far apart
3. The scattering results depend on the interparticle 

interactions
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Example: Diagram of Rutherford scattering experiment
http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

Presenter Notes
Presentation Notes
This illustrates the setup of the famous Rutherford scattering experiment.

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html
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Graph of data from scattering experiment

From website: http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/rutsca2.html

Presenter Notes
Presentation Notes
Reconstruction experimental data from the Rutherford experiment.

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/rutsca2.html
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Standardization of scattering experiments --

Impact parameter: b

Presenter Notes
Presentation Notes
Some details of scattering geometry and analysis.
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Figure from Marion & Thorton, Classical Dynamics
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Note:  The notion of cross section is common to many areas 
of  physics including classical mechanics, quantum 
mechanics, optics, etc.   Only in the classical mechanics 
can we calculate it from a knowledge of the particle trajectory 
as it relates to the scattering geometry.

Note: We are assuming 
that the process is 
isotropic in ϕ 

Presenter Notes
Presentation Notes
More details.
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Simple example – collision of hard spheres 
having mutual radius D;  very large target mass

Microscopic view:
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Presenter Notes
Presentation Notes
Illustration of the analysis for the scattering of a hard sphere on a massive hard sphere.
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Some more details of  form of b(θ)
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Simple example – collision of hard spheres -- continued

Hard sphere:
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Presenter Notes
Presentation Notes
Total cross section versus partical cross section.
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More details of hard sphere scattering –

Hidden in the analysis are assumptions about the 
scattering process such as:
• No external forces  linear momentum is conserved
• No dissipative phenomena  energy is conserved
• No torque on the system  angular momentum is 

conserved
• Target particle is much more massive than scattering 

particle
• Other assumptions??

Note that for quantum mechanical hard spheres at low 
energy the total cross section is 4 times as large.

Presenter Notes
Presentation Notes
Some questions and comments.       The discussion of scattering theory will be continued next time.
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E/V0V
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)/V
0

Distances of closest approach

A typical energy diagram, can help the analysis of the 
particle motion:
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Note that for the case of a particle of mass  moving
in the presence of a central potential ( ) (such as due
to a massive interacting particle), the following relation
holds: 

m
V r

In the next few lectures we will
1. Discuss the extension of these ideas to the case 

where the interacting particle is not necessarily 
massive.

2. “Derive” the famous Rutherford scattering formula.
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