PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 14 -- Chap. 1 of F&W

 Summary of scattering theory of a
single particle from a stationary target

* Analysis of two particle system; center
of mass and laboratory frames

 Differential cross section for in the
center of mass reference frame
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Presenter Notes
Presentation Notes
This lecture will continue the discussion of scattering theory.    After discussing a little bit more of the background and motivation, we will jump into the geometry of the process.   Typical “lab” experiments are hard to analyze directly.     However, scattering in the center of mass frame of reference is much more  amenable to detailed analysis.    In this lecture we will discuss how we can relate the results in the two frames of reference.     Next time, we will analyze  the center of mass scattering for a few examples.


Physics

Colloquium

Two-dimensional Chalcogenide Topological Insulators

Over the last few vears, the Nanotech group led by Dr. Carroll
has been extensively working on the synthesis, characterization
and application of chalcogenides-based 2D topological
insulators. Why are topological insulators important and what
makes the research exciting?

A topological insulator (TT) is an insulating material that always
has a metallic boundary when placed next to a vacuum or an
‘ordinary” insulator. These metallic boundaries originate from
topological invariants, which cannot change as long as a
material remains insulating. This unusual metallic edge gives
rise to spin-momentum-locked electrons, thereby leading to
dissipationless transport that is robust to disorder and even
thermal fluctuations. In other words, the metallic states become
superconducting — a phenomenon restricted to low
temperatures, reduced dimensionality, and high magnetic fields.
Manipulation of these topologically protected edge states could
lead to a new architecture for quantum bits at room
temperature, an application that is most sought-after in current
research.

The metallic states on Tls arise from two primary classes: 2D Tls
that are metallic only on the edges of a nanostructure, and the
3D class that is metallic on the crystal surface while its bulk is
insulating. By screening materials with a spin-orbit coupling
that is larger than their bulk-band gap, a pre-requisite to
observe T properties close to ambient temperatures, layered,
bismuth and antimony-based chalcogenides proved most
accessible and promising. Moreover, it is predicted that 2D Tls
have more addressable states, so our group is spending
significant efforts studying chalcogenides-based 2D Tls.

The talk is divided into the following sections to give an overall
picture of our ongoing activities in this direction: synthesis of
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Ca

Date

Topic

F&W HW
1 |[Mon, 8/26/2024 Introduction and overview #1
2 Wed, 8/28/2024 Chap. 3(17)|Calculus of variation #2
3 |Fri, 8/30/2024 ||Chap. 3(17)|Calculus of variation #3
4 Mon, 9/02/2024 Chap. 3 Lagrangian equations of motion e
9 |Wed, 9/04/2024 Chap. 3 & 6 Lagrangian equations of motion #5
6 (Fri, 9/06/2024 |Chap. 3 & 6|Lagrangian equations of motion #6
7 Mon, 9/09/2024 |Chap. 3 & 6 |Lagrangian to Hamiltonian formalism [#/
8 Wed, 9/11/2024 Chap. 3 & 6 |Phase space #8
9 |(Fri, 9/13/2024 |Chap. 3 & 6 |Canonical Transformations
10 |Mon, 9/16/2024 |(Chap. 5 Dynamics of rigid bodies #9
11 Wed, 9/18/2024 |Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024 |Chap. 5 Dynamics of rigid bodies #11
13 |Mon, 9/23/2024 |Chap. 1 Scattering analysis #12
14 |\Wed, 9/25/2024 (Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024 |Chap. 1 Scattering analysis #14

9/25/2024
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Presenter Notes
Presentation Notes
This is the schedule posted on the webpage.   There is no new HW this time.   Most likely there will be a new HW on Monday.


PHY 711 — Assignment #13
Assigned: 09/25/2024  Due: 9/30/2024

1. Suppose that a particle is scattered by a very massive target particle such that energy and
angular momentum are conserved. The trajectory of the scattering particle is found to have
an impact parameter b which depends on the scattering angle ¢ according to the formula

]_ |

b(0) = K 7]

where K denotes a constant which depends on energy and other parameters. What is the
differential cross section for this process?

PHY 711 -- Assignment #14

Assigned: 9/27/2024 Due: 9/30/2024

Continue reading Chapter 1 in Fetter & Walecka.

e Work Problem #1.16 at the end of Chapter 1 in Fetter and Walecka. Note that you might want to
use the equation in FW #1.15 or the equivalent equation derived in class.
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Scattering theory: detector

b+ db
I_-;.+— o
Scatiering
center
Area = Jmh db .-"--

Akl = g4 =

Large sphere of radius K

Figure 58 The scattering problem and relation of cross section to impact parameter.
Can you think of examples of such an experimental setup?
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Presenter Notes
Presentation Notes
This is the image of the ideal scattering geometry that is in your textbook.     Later in the lecture we will reference this diagram as the “lab” frame of reference.    The target  particle (#2) is assumed to be initially at rest,   while the scattering particle (#1) is moving at constant velocity toward the target (when it is far from the target).      As the scattering particle approaches the target, it is deflected as shown and ends up in the detector place at the scattering angle theta.   


Other experimental designs —

At CERN https://home.cern/science/experiments/totem
the study of highly energetic proton-proton scattering is
designed in the center of mass frame of reference by
accelerating two proton beams focused to collide head on in
the Large Hadron Collider LHC facility.

Figure from CERN website

l‘

T2 ' '
_ ! ot
v el T_ - h — i [I T /
L2 ) -._._ "4 i ‘:'
T1
9m
-Z side 41-.3m - [ | | e

Figure 1.17: View of the inelastic forward trackers T1 and T2 inside the CMS detector.

What might be the advantage/disadvantage of this design?


Presenter Notes
Presentation Notes
Think about some situations you know about where such a laboratory experiment has been carried out.     Of course, the stationary target arrangement is not always the case.    This slide mentions a particular experiment at CERN where the experiment is actually designed to be in the center of mass frame.    This is a special arrangement and the physics under consideration goes far beyond classical mechanics.    In fact, it is a highly inelastic collision.    

https://home.cern/science/experiments/totem

What are the benefits/disadvantages of expressing the
scattering cross section in the laboratory frame of
reference vs center of mass frame of reference? (When
or why to use a particular frame of reference)

Advantages of Lab frame Advantages of CM frame

1. Natural experimental 1. Analysis is done in CM
design. frame.

2. Some targets are more 2. Experiment is more
naturally at rest. energy efficient.

3. ?? 3. ??



Differential cross section

(d (Tj _ Number of detected particles at & per target particle

Q) Number of incident particles per unit area

= Area of incident beam that is scattered into detector

at angle 6
dobdb

(d_aj_ dpbdb b |db]|
(E ” J dQ) dpsin0do  sind|do)|
@* Y
\J, Seaig
dA =2x bdb

Figure from Marion & Thorton, Classical Dynamics
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Presenter Notes
Presentation Notes
For the normal (stationary target) setup, it is very useful to standardize the measurement of scattering in terms of a “cross section”.        Furthermore, for classical mechanics, where we can analyze the particle trajectories in detail,  we can calculate the cross section in terms of  particle parameters.        While our analysis will consider a single particle in the vicinity of the target,     actual experiments are performed with many such particles in a beam.    All beam particles are initially moving toward the target with a given initial kinetic energy.   Within the beam of particles,  there will be a distribution of “impact parameters” b defined in the diagram.   As we will see, the impact parameter of the particple will determine its scattering angle theta.    From geometry, the function b(theta) determines the differential  cross section from the expression given on this slide.


More detalls --

We imagine that the beam of particles has a cylindrical
geometry and that the physics is totally uniform in the
azimuthal direction. The cross section of the beam is a

circle.

View of beam
cross section:

€This piece of the beam scatters into

b the detector at angle 0
This logic leads to the notion that b is
\/ a function of theta and we will try to
find b(0) for various cases.

@ = azimuthal angle
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Note: The notion of cross section is common to many areas
of physics including classical mechanics, quantum
mechanics, optics, etc. Only in the classical mechanics
can we calculate it from a knowledge of the particle trajectory
as it relates to the scattering geometry.

b /fﬂ d (Dbdb
@ t E :/,\'{; ‘ @
U Scattering

center
dA=2x b db

Figure from Marion & Thorton, Classical Dynamics

(a’_crj_ dpbdb b
dQQ) dpsin@df sinf

db Note: We are assuming
dé that the process is
Isotropic in ¢


Presenter Notes
Presentation Notes
This slide shows a little more detail of the same ideas.


Elaboration on how we know that b db d¢ is the relevant
piece of beam ending up in our detector?

Large sphere of radius &

Comment: The interaction potential will determine the
detailed shape of the particle trajectory which we can express
as r(6) , which in principle can be related to the impact
parameter as a function of scattering angle b(6).
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Simple example — collision of hard spheres

oA (d_aj_ b_|db
@ A dQ) sin@|do

EEEEEE

Microscopic view: b (6’) = (7
b(6’) = Dsin(z —gj
9 2 2
h (d_ffj _D
S dQ ) 4

9/25/2024 PHY 711 Fall 2024 -- Lecture 14 12


Presenter Notes
Presentation Notes
Here we show the example for the case that the scattering particle and the target interact as ideal hard spheres, assuming the target particle is stationary and infinitely massive.   In this case the cross section depends on the distance of closest approach D.


Some more details of form of b(6)

b=Dsina :Dsin(

b & 9 20+0=r1

T 0

2 2
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L Simple example — collision of hard spheres -- continued

Total scattering cross section:

b+ oy

Scatiering
center

sz;i—g d Q)

Area = 2zh db 1
]
Arel = gd =

Large sphere of radins &

Hard sphere:
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Presenter Notes
Presentation Notes
Additional comments on the differential and total cross sections.


Now consider the more general case of particle interactions
and the corresponding scattering analysis.

Scattering theory can help us analyze the interaction potential
V(r). First, we need to simplify the number of variables.



Relationship of scattering cross-section to particle interactions --
Classical mechanics of a conservative 2-particle system.

— le

F,=-VV(r,-r,) =E :lmlvf +—my; +V (1, —r,)

1

2 2
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Presenter Notes
Presentation Notes
This is the general diagram we showed last time.        We will assume that there are no additional forces acting on the system and that the forces are entirely conservative so that energy E (sum of kinetic and potential)  is conserved


Relationship between center of mass and laboratory frames of
reference. Ata time t, the following relationships apply --

Definition of center of mass R,
mx, +m,xr, = (m1 + m, ) R,

myx, +m,xr, = (m1 +m2)RCM = (m1 +m2)VCM

1 1 Note that r = %
E=—my, +=—m,v, +V(r,—r,)
2 2
1 o) 1 2
where: u= el Why do this? We need to
m, +m, make the mathematics

tractible...


Presenter Notes
Presentation Notes
It is convenient to transform our coordinate system from particle 1 and particle 2 to instead  the center of mass coordinate and the relative coordinate.


Classical mechanics of a conservative 2-particle system --
continued

1 1
E =5(ml +m2)VgM +E
For central potentials: V(r1 —r2)= V(‘r —r D = (7”12)

Relative angular momentum 1s also conserved:

ulv, = v, +V (1, -r,)

L,=r,xuv,

E=Limem)2, + Lt iy ()
2 2 21

Simpler notation:

E :l(m1 +m, ) Vi +l,uz>2 - r +V (r)
2 2 2 ur”


Presenter Notes
Presentation Notes
If there are no external forces on this system, the kinetic energy of the center of mass is constant.     Additionally, for the central interaction potential , the relative angular momentum is also conserved.    The last equation shows that the important physics of the system is determined by the total energy of the relative system.


Simpler notation:

For scattering analysis only need&

to know trajectory before and after
the collision. We also generally \ﬂ
assume that the interaction \ a‘.v
between particle and target V/(r)

conserves energy and angular

moementum. PHY 711 Fall 2024 -- Lecture 14
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Presenter Notes
Presentation Notes
Here we highlight the last result.      The green arrows point to the relative coordinate terms that will be the focus of our analysis.    For the scattering process, only the before and after processes directly enter the analysis.    Of course the after parameters depend on the  before parameters and the intermediate trajectory.  


Comment: The impact parameter b is a useful
concept in the general case.

1 N A
E_ :E(m1 +m2)VCM +5,ur + 2,ur2 +V(r)
\ J
Y \ ' J
ECM Erel
1 ., E_b

E  =—p’+——+V(r)



In what situations do particles undergo inelastic scattering,
rather than elastic scattering?

Comment — elastic scattering means E; i, =Efnal
Typically, elastic scattering occurs when two fundamental

particles interact (as long as the final kinetic energy of both
particles is taken into account).

Elastically bouncing ball
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Note: The following analysis will be carried out in the center
of mass frame of reference.

In laboratory frame: In center-of-mass frame:
Vi
M
my,
o Ve
mtarget
. mlmtarget
ﬂ =
ml + mtarget
l= ‘r X ,uvl‘

9/25/2024 PHY 711 Fall 2024 -- Lecture 14 22


Presenter Notes
Presentation Notes
In the next several slides we will consider the scattering geometry and the relationships between the two coordinate systems.


Typically, the laboratory frame is where the data is
taken, but the center of mass frame is where the
analysis is most straightforward.

Previous equations --

1 , 1 ., 7
E =§(m1 +m2)VCM +5,ur + 210 + V(r)
* *
constant relative coordinate system,;

visualize as “in” CM frame
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L1 It is often convenient to analyze the scattering cross
section in the center of mass reference frame.

Relationship between normal laboratory reference
and center of mass:

Laboratory reference frame:

Before After
:n1—> o
Uy u,=0 V)/G’
AN
Center of mass reference frame:
Before After

m,
C = <@ my \V.
u, U, !
yvz
9/25/2024 PHY 711 Fall*2024 -- Lecture 14 24



Presenter Notes
Presentation Notes
Here we define the notation,   keep theta as the scattering angle measured in the lab frame.


.

Relationship between center of mass and laboratory

frames of reference -- continued
Since m, 1s initially at rest in lab frame:

Before collision:

m,

m m
— _ _ 2 2
VCM _ ul ul T Ul +VCM — Ul T ul _ VCM
m, +m, m, +m, m,
m,
u, =U,+V,, = U, =— u =-Vv,,
m, +m,

After collision:
v, =V, +V,,
vV, =V, +V,,


Presenter Notes
Presentation Notes
u and U denote before the collision and v and V denote after the collision.   Lower case references the lab frame and upper case references the center of mass frame.  


®
Relationship between center of mass and laboratory
frames of reference for the scattering particle 1

Veu
V, v
0
v,=V,+V,,
v, sin@ =V, siny
v,cos@ =V cosy +V,,,
sin sIn

tan & = For elastic

cosy + Ve, 1V, ) SESYY 1y | i \ scattering

9/25/2024 PHY 711 Fall 2024 -- Lecture 14
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Presenter Notes
Presentation Notes
Focusing on the variables describing particle 1 after the collision.


Digression — elastic scattering

1 2 1 2 1 2
smU; +5m,U, "'E( +m2)VCM
_ 1 2 1 2 1 2
=smlV" +5m,}; "'E(m Z)VCM
Also note:
mU, +m,U, =0 mV,+m,V, =0
m,
U1 — —VCM Uz — _VCM
m

=[0,|=[Vi| and [U,|=|V,|=|Vey
Alsonote that : ml‘Ul‘ = mz‘Uz‘
So that : VeV, =V, /U =m,/m,
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Summary of results --

vi=V,+Vq,
v, sin@ =V siny
v,cos@ =V, cosy +V,,
Sin sIn
cosy +V.,, 'V, B cosy +m, / m,

* *

General case Special case of
elastic scattering

For elastic scattering

tan @ =

Ve ' Vi=my /' m,

9/25/2024 PHY 711 Fall 2024 -- Lecture 14
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Relationship between center of mass and laboratory
frames of reference — continued (elastic scattering)

_ V
vVi=V,+ Ve 1 V4

v, sinf =V, siny

v,cos@ =V cosy +V,,

fan O — sin _ sin
cosy +V., 'V, cosy+m /m,
Also:  cosf = cosy +m / m,

\/1+2m1 | mycosy +(m, / m,)
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Presenter Notes
Presentation Notes
After some algebra.


More details -- from the diagram and equations --
=V, +V,,
v, sind =V, siny

v,cos@ =V cosy+V,.,
Take the dot product of the first equation with itself

2

P=V 42V, cosy +V2,

5 2
or L= 1+2V cosz,u+V2 = 1+2—cosw+ M
4 4 4 n, m,

cosy +m, / m,

—  cosf =

\/1+2m1 / m, cosy +(m, /m2)2

9/25/2024 PHY 711 Fall 2024 -- Lecture 14
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Differential cross sections in different reference frames

(dGLAB (9)] _ (dGCM (w)j Q.

dQLAB dQCM dQLAB
dQ., [siny dy/|_ dcosw|
dQ, . |sin@ dO@| |dcosl
Using:
cos — cosy +m, / m, 2
\/1+2(m1/m2)cosw+(ml/m2)
d cos @ (m, / my)cosy +1

d cosy (1+2(m1 / m,)cosy +(m, /77/12)2)3/2


Presenter Notes
Presentation Notes
More steps.


Differential cross sections in different reference frames —
continued:

do,,;(0) | _(docy (v) )|d cosy
N la

dQ, . - dQ,,, d cos@

[dam («9)j _ [dGCM (w)j (14 2m, / m, cosy +(m, /m,))

i, | | do,,, (m, / my)cosy +1

sin

where: tand =
cosy +m, / m,


Presenter Notes
Presentation Notes
Summary of results


3/2

do,,, (0) i o, () (1+2ml/mzcosw+(ml/m2)2)
dQ, . dQ,,, (m, / my)cosy +1

sin

where: tand =
cosy +m, / m,

Example: suppose m, =m,
sin i

= 0 =—
cosy +1 2

In this case: tan@ =

notethat 048 S%

(1o20(0)) (dea (20)) 1

dQLAB dQCM




Summary --
Differential cross sections in different reference frames —
continued:

do,5(0) ) _(doey, (v))|dcosy
Son

dQ, . - dQ,,, d cosO

3/2
dGLAB(e) (do,, (W) (1+2m1 / m, cos:,ynt(m1 /mz)z)
aQ, .. ) | dQ., (m, / m,)cosy +1

sin For elastic scattering

where: tand =
cosy +m, / m,



Hard sphere example — continued

m,=m,

Center of mass frame

(dGCM(W)] :D_2

dQ.., 4
dQ.,,

2
D — 4r=7xD’

4

Lab frame

(dO—LAB (9)] =D’cos@ O=1-

dQLAB

Idalab (9) dQ _
dQZab lab

/2

2

27D’ j cos @ sinfdO=xD*

0



Scattering cross section for hard sphere in lab frame

for various mass ratios:

[daLAB ()

dQLAB

9/25/2024

|

1.0-
0.9-
0.8
0.7-
0.6
0.5
0.4-

0.3

0.2
0.1

20 40 60 80 120

v
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Presenter Notes
Presentation Notes
Plot of the lab cross sections for various mass ratios.


For visualization, 1s convenient to make a "parametric" plot of
dGLAB
d)| vs 6
( o\ )j (v)

3/2
dGLAB(e) B dGCM(W) (1+2ml/mzcosw+(ml/m2)2)

dQ, . dQ,,, (m, / m,)cosy +1

Sin
where: tand = v

cosy +m, / m,
Maple syntax:

> plot( {[psi(theta, 0), sigma(theta, 0), theta=10.001 ..3.14], [ psi(theta, .1), sigma(theta, .1), theta
=0.001..3.14], [ psi(theta, .5), sigma(theta, .5), theta=0.001 ..3.14 ], [psi(theta, .8),
sigma(theta, .8), theta=0.001 ..3.14], [psi(theta, 1), sigma(theta, 1), theta=0.001..3.14]},
thickness =3, font = [ 'Times','bold', 24 |, gridiines = true, color = [ red, blue, green, black,
orange])

I



onr a continuous potential interaction in center of mass

reference frame: 1 /?
E. :—,ur2+ : +V(r)
/2 2 2ur
8 =+ V(r)
7 2/Lﬂ"
6 / Need to relate these parameters to
5 differential cross section do
3 dQCM
2
1
0 |
3 4
Fmin m,m, '
U= ¢/=angular momentum
m, +m,
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Presenter Notes
Presentation Notes
Diagram for the relative coordinates    The analysis of this equation can give us the trajectory r(t) as a function of time.   We will want to know r(theta) (as a function of angle).
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