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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin 103

Notes for Lecture 14 -- Chap. 1 of F&W

• Summary of scattering theory of a 
single particle from a stationary target

• Analysis of two particle system; center 
of mass and laboratory frames

• Differential cross section for in the 
center of mass reference frame

Presenter Notes
Presentation Notes
This lecture will continue the discussion of scattering theory.    After discussing a little bit more of the background and motivation, we will jump into the geometry of the process.   Typical “lab” experiments are hard to analyze directly.     However, scattering in the center of mass frame of reference is much more  amenable to detailed analysis.    In this lecture we will discuss how we can relate the results in the two frames of reference.     Next time, we will analyze  the center of mass scattering for a few examples.
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Presenter Notes
Presentation Notes
This is the schedule posted on the webpage.   There is no new HW this time.   Most likely there will be a new HW on Monday.
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Scattering theory: detector

Can you think of examples of such an experimental setup?

Presenter Notes
Presentation Notes
This is the image of the ideal scattering geometry that is in your textbook.     Later in the lecture we will reference this diagram as the “lab” frame of reference.    The target  particle (#2) is assumed to be initially at rest,   while the scattering particle (#1) is moving at constant velocity toward the target (when it is far from the target).      As the scattering particle approaches the target, it is deflected as shown and ends up in the detector place at the scattering angle theta.   
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Other experimental designs – 
       At CERN https://home.cern/science/experiments/totem 
the study of highly energetic proton-proton scattering is 
designed in the center of mass frame of reference by 
accelerating two proton beams focused to collide head on in 
the Large Hadron Collider LHC facility.
Figure from CERN website 

What might be the advantage/disadvantage of this design?

Presenter Notes
Presentation Notes
Think about some situations you know about where such a laboratory experiment has been carried out.     Of course, the stationary target arrangement is not always the case.    This slide mentions a particular experiment at CERN where the experiment is actually designed to be in the center of mass frame.    This is a special arrangement and the physics under consideration goes far beyond classical mechanics.    In fact, it is a highly inelastic collision.    

https://home.cern/science/experiments/totem
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What are the benefits/disadvantages of expressing the 
scattering cross section in the laboratory frame of 
reference vs center of mass frame of reference? (When 
or why to use a particular frame of reference)

Advantages of Lab frame
1. Natural experimental 

design.
2. Some targets are more 

naturally at rest.
3. ??

Advantages of CM frame
1. Analysis is done in CM 

frame.
2. Experiment is more 

energy efficient.
3. ??
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Presenter Notes
Presentation Notes
For the normal (stationary target) setup, it is very useful to standardize the measurement of scattering in terms of a “cross section”.        Furthermore, for classical mechanics, where we can analyze the particle trajectories in detail,  we can calculate the cross section in terms of  particle parameters.        While our analysis will consider a single particle in the vicinity of the target,     actual experiments are performed with many such particles in a beam.    All beam particles are initially moving toward the target with a given initial kinetic energy.   Within the beam of particles,  there will be a distribution of “impact parameters” b defined in the diagram.   As we will see, the impact parameter of the particple will determine its scattering angle theta.    From geometry, the function b(theta) determines the differential  cross section from the expression given on this slide.
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More details --

We imagine that the beam of particles has a cylindrical 
geometry and that  the physics is totally uniform in the 
azimuthal direction.    The cross section of the beam is a 
circle. 

b
This piece of the beam scatters into 
the detector at angle θ

This logic leads to the notion that b is 
a function of theta and we will try to 
find b(θ) for various cases.

azimuthal angleϕ ≡

View of beam 
cross section:
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Figure from Marion & Thorton, Classical Dynamics
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Note:  The notion of cross section is common to many areas 
of  physics including classical mechanics, quantum 
mechanics, optics, etc.   Only in the classical mechanics 
can we calculate it from a knowledge of the particle trajectory 
as it relates to the scattering geometry.

Note: We are assuming 
that the process is 
isotropic in φ 

Presenter Notes
Presentation Notes
This slide shows a little more detail of the same ideas.
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Elaboration on how we know that b db dφ is the relevant 
piece of beam ending up in our detector?

Comment:   The interaction potential will determine the 
detailed shape of the particle trajectory which we can express 
as r(θ) ,   which in principle can be related to the impact 
parameter as a function of scattering angle b(θ). 
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Simple example – collision of hard spheres

Microscopic view:
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Presenter Notes
Presentation Notes
Here we show the example for the case that the scattering particle and the target interact as ideal hard spheres, assuming the target particle is stationary and infinitely massive.   In this case the cross section depends on the distance of closest approach D.
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Some more details of  form of b(θ)
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Simple example – collision of hard spheres -- continued

Hard sphere:

θ
2
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d D
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Total scattering cross section:
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Presenter Notes
Presentation Notes
Additional comments on the differential and total cross sections.
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Now consider the more general case of particle interactions 
and the corresponding scattering analysis.

Scattering theory can help us analyze the interaction potential 
V(r).   First, we need to simplify the number of variables.
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Classical mechanics of a conservative 2-particle system.
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Presenter Notes
Presentation Notes
This is the general diagram we showed last time.        We will assume that there are no additional forces acting on the system and that the forces are entirely conservative so that energy E (sum of kinetic and potential)  is conserved
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Relationship between center of mass and laboratory frames of 
reference.    At a  time t, the following relationships apply --
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Why do this?    We need to 
make the mathematics 
tractible… 

Presenter Notes
Presentation Notes
It is convenient to transform our coordinate system from particle 1 and particle 2 to instead  the center of mass coordinate and the relative coordinate.
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Classical mechanics of a conservative 2-particle system -- 
continued
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Presenter Notes
Presentation Notes
If there are no external forces on this system, the kinetic energy of the center of mass is constant.     Additionally, for the central interaction potential , the relative angular momentum is also conserved.    The last equation shows that the important physics of the system is determined by the total energy of the relative system.
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( ) ( )
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For scattering analysis only need 
to know trajectory before and after
the collision. We also generally 
assume that the interaction 
between particle and target V(r) 
conserves energy and angular 
momentum.

Presenter Notes
Presentation Notes
Here we highlight the last result.      The green arrows point to the relative coordinate terms that will be the focus of our analysis.    For the scattering process, only the before and after processes directly enter the analysis.    Of course the after parameters depend on the  before parameters and the intermediate trajectory.  
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Comment:   The impact parameter b is a useful 
concept in the general case.
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In what situations do particles undergo inelastic scattering, 
rather than elastic scattering?

Comment – elastic scattering means Einitial=Efinal

Typically, elastic scattering occurs when two fundamental 
particles interact (as long as the final kinetic energy of both 
particles is taken into account).

Elastically bouncing ball Inelastically collision
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Note:   The following analysis will be carried out in the center 
of mass frame of reference.

In laboratory frame:                   In center-of-mass frame:
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Presenter Notes
Presentation Notes
In the next several slides we will consider the scattering geometry and the relationships between the two coordinate systems.
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Typically, the laboratory frame is where the data is 
taken, but the center of mass frame is where the 
analysis is most straightforward.
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constant relative coordinate system; 
visualize as “in” CM frame
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It is often convenient to analyze the scattering cross 
section in the center of mass reference frame. 

Relationship between normal laboratory reference 
and center of mass: 

Laboratory reference frame:
         Before                                          After   

u1 u2=0 v1

v2

ψ

ζ

m1 m2

Center of mass reference frame:
         Before                                          After   

U1 U2

V1

V2

θ

m1 m2

ψ

Presenter Notes
Presentation Notes
Here we define the notation,   keep theta as the scattering angle measured in the lab frame.
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Relationship between center of mass and laboratory 
frames of reference -- continued
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Presenter Notes
Presentation Notes
u and U denote before the collision and v and V denote after the collision.   Lower case references the lab frame and upper case references the center of mass frame.  
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Relationship between center of mass and laboratory 
frames of reference for the scattering particle 1

1 1

1 1

1 1

1 1 2

sin sin
cos cos

sin sintan
cos / cos /

CM

CM

CM

v V
v V V

V V m m

θ ψ
θ ψ

ψ ψθ
ψ ψ

= +
=
= +

= =
+ +

v V V

For elastic 
 scattering

V1

VCM

v1
ψ θ

Presenter Notes
Presentation Notes
Focusing on the variables describing particle 1 after the collision.
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Digression – elastic scattering
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Summary of results --

1 1
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Relationship between center of mass and laboratory 
frames of reference – continued  (elastic scattering)
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Presenter Notes
Presentation Notes
After some algebra.
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More details -- from the diagram and equations -- 

Take the dot product of the first equation with itself
2 2 2
1 1 1

22
1 1 1

2
1 1 1 2 2

2 cos

or 1 2 cos 1 2 cos

CM

CM CM

CMv VV

v V m m
V V

V V

V
V m m

ψ

ψ ψ

= +

+ +

+

 
= + = +  

 

( )
1 2

2
1 2 1 2

cos /    cos
1 2 / cos /

m m

m m m m

ψθ
ψ

+
⇒ =

+ +
9/25/2024 PHY 711  Fall 2024 -- Lecture 14 30



9/25/2024 PHY 711  Fall 2024 -- Lecture 14 31

Differential cross sections in different reference frames
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Presenter Notes
Presentation Notes
More steps.
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Differential cross sections in different reference frames – 
continued:
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Presenter Notes
Presentation Notes
Summary of results
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Example:    suppose m1 = m2
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Summary --
Differential cross sections in different reference frames – 
continued:

For elastic scattering
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Hard sphere example – continued
                         m1=m2
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Scattering cross section for hard sphere in lab frame 
for various mass ratios:
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Presenter Notes
Presentation Notes
Plot of the lab cross sections for various mass ratios.
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( ) ( )
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For a continuous potential interaction in center of mass 
reference frame:
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Need to relate these parameters to 
differential cross section 
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Presenter Notes
Presentation Notes
Diagram for the relative coordinates    The analysis of this equation can give us the trajectory r(t) as a function of time.   We will want to know r(theta) (as a function of angle).
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