PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion for Lecture 16 — Chap. 4 (F & W)
Analysis of motion near equilibrium
1. Small oscillations about equilibrium

2. Normal modes of vibration
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Presenter Notes
Presentation Notes
In this lecture we will analyze systems near equilibrium.    This system represents a lot of physical systems and is associated with a rich toolbox of mathematical formalisms.


Date F&W Topic HW
1 Mon, 8/26/2024 Introduction and overview #1
2 |Wed, 8/28/2024 |Chap. 3(17) Calculus of variation #2
3 |Fri, 8/30/2024 |Chap. 3(17) Calculus of variation #3
4 Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
5 |Wed, 9/04/2024 |Chap. 3 & 6 Lagrangian equations of motion #5
6 |Fri, 9/06/2024 |Chap. 3 & 6 Lagrangian equations of motion H#0
7 |Mon, 9/09/2024 |Chap. 3 & 6 Lagrangian to Hamiltonian formalism #/
8 |Wed, 9/11/2024 |Chap. 3 & 6 |Phase space #38
9 |Fri, 9/13/2024 |Chap. 3 & 6 Canonical Transformations
10 Mon, 9/16/2024 Chap. 5 Dynamics of rigid bodies #9
11 Wed, 9/18/2024 Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024 Chap. 5 Dynamics of rigid bodies #11
13 [Mon, 9/23/2024 Chap. 1 Scattering analysis #12
14 Wed, 9/25/2024 Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024 Chap. 1 Scattering analysis #14
» 16 Mon, 9/30/2024 Chap. 4 Small oscillations near equilibrium
17 \Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-10/24
18 |Fri, 10/4/2024 Chap. 4 Normal mode analysis THE-10/3-10/24
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Presenter Notes
Presentation Notes
We are starting the material covered in Chap. 4.    


®
Motivation for studying small oscillations — many interacting

systems have stable and meta-stable configurations which
are well approximated by:

dv
dx?

Vix)=V(x,,) +%(x—xeq =V(x,,) +%k(x—xeq

250-
200-
y 150-
100-
50-
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Presenter Notes
Presentation Notes
This is a plot for an arbitrary one dimensional potential function showing two stable equilibria near x=2 and x=8.


k

0 m

Equations of motion for a single oscillator:

Let k=mo’

| |
L(x,x,t)=—mx" ——mw’x’

2 2
d oL oL . >
dt ox Ox

x(t) = Asin(wt + @)


Presenter Notes
Presentation Notes
Lagrangian analysis and general solution.


Coupled oscillators --
Example — linear molecule

—> X

> x2
> X
| 1 : |
L= Emﬂﬁz +5m2xz2 +§m3x32
1 » 1 2
_Ek(xz_x1_€12) _Ek(xs_xz_gzs)

Equilibrium lengths
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Presenter Notes
Presentation Notes
A more complicated example with 3 masses connected with springs.


.

1, 1 ., 1 .
L=—mx’ +—m,x; +—mx;
2

2 2

1 |
_Ek(xz — X _(12)2 _Ek()% — 4 _623)2

. 0 0 0

1 ., 1 ., 1 5 1 1
L :Emle +§m2x22 +5m3x32 _Ek(xz —X1)2 —Ek(x:s —x2)2

Coupled equations of motion :
mx, = k(xz _xl)
m,X, = —k(x2 — X, )-l— k(x3 - X, ) = k()c1 —2x, + X, )

My X, = —k(x3 — xz)


Presenter Notes
Presentation Notes
Analyzing the equations of motion.


Coupled equations of motion :
mx, = k(xz _xl)
m,X, = —k(x2 — X, )-l— k(x3 - X, ) = k(x1 —2x, + X, )

My X, = —k(x3 — xz)

Let x()=X"e™ where X and w, are to be determined
—o,m X\ =k(X; - X7

~,m, X5 =k( X -2X5 + X7 )

—o,m X{ = k(X - X7 )
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Presenter Notes
Presentation Notes
Coupled differential equation and tricks for solution.


Coupled linear equations:

—@’m X" =k(X¢ - Xx7)

—@?m, XS =k(Xe-2X7 + X7

- 2m X¢ = k(X5 - X7)

Matrix form:

(k-o’m, -k 0
~k  2k-o’m, -k

\

(X
X

0 —k k—a)jmw

73


Presenter Notes
Presentation Notes
Resulting linear equations also written in matrix form.


Matrix form :

(k—w’m, —k 0 X
—k  2k-@&’m, -k |X%|=0
.0 —k k—a)ij\Xf)

More convenient form:

Let Y, E\/EX . Equations for Y, take the form:

/Kn _wé — K, 0 \(Yla\
— Ky 2K22 — a)ozz — K3 Yza =0
2 a
.0 Ky Ky =@, \ Y5
k



Presenter Notes
Presentation Notes
The original equations are not symmetric.     With this transformation, we can make the equations take a symmetric form.


Digression:

Eigenvalue properties of matrices My, =241y,
Hermitian matrix: H, =H y
Theorem for Hermitian matrices :
H _
A, havereal valuesand y, -y, =0,
Unitary matrix : uUu” =1

A,|=1 and y. -y, =6,


Presenter Notes
Presentation Notes
Digression on linear algebra theory.


®
Digression on matrices -- continued

Eigenvalues of a matrix are “invariant” under a similarity
transformation

Eigenvalue properties of matrix: My, =1y,

Transformed matrix: M'y' =A4"y'
If M'=SMS™' then A' =1 andS’'y' =y,
Proof SMS_ly ' =AY

M(S7y' )= 4% (S7Y')


Presenter Notes
Presentation Notes
Similarity transformations used to analyze our system.



Example of transformation:

Original problem written in eigenvalue form:

kim, —k/m, 0 X/ X/
~k/m, 2k/m, —kim, | X{|=0| XS
0 —k/m, kim, )| Xj Xy
Let S=| 0 Jm, 0 |; SMS'=|-x,
0 0 m, 0
Let Y=SX
K —K 0 Yla Yla
—k, 2k, —Ky| Y |= a)i Yy
0 —Ky3 K33 Y3a Y3a

k

where K, =K;=
\Jmm ;
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Presenter Notes
Presentation Notes
Details for our case..


In our case:

(k. -k, 0 YY) (Y
—Kk, 2K, —K,|YY|=w|Y,
.0 -k Ky )\Y;‘ \Yf‘)
for m,=m, =m, andm, =m, (CO,)
Koo  ~Koc 0 \/Yla\ /Yla\
~Koe 2Kce —Koo |V |=@,| Yy
0 Ko Koo )\Y.“sa) \Y3a)



Presenter Notes
Presentation Notes
More details for our case.


Eigenvalues and eigenvectors :

(o
/Yll\ m_C\ /Xll\ 1)
w’ =0 Y, |=N,| 1 | =N',| 1
1 Mo 1
) W) Ks)
/le\ (1) /Xlz\ (1)
a)zzzmi Yy |=N, 0|, =N',| 0
0] 2
%y . 3 ) v,
a)32:m +i Y, |= Nyl =222 |, | X5 [=NY| =2
0] C 3 3
L) U b A& ULy




k k
Q. .0 1@ -
O
W, = |—
Mg,

k

k

k 2k

C()3 = +
m, Mg

- —_—
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Presenter Notes
Presentation Notes
Visualization of the solution for our case.


General solution :

xi(v _ ER(Z CaXiae—ia)atj

For example, normal mode amplitudes

C“ can be determined from initial conditions


Presenter Notes
Presentation Notes
The general solution will depend on initial values or boundary values.


Comment on solving for eigenvalues and eigenvectors —
while it is reasonable to find these analytically for 2x2 or
3x3 matrices, it is prudent to use Maple or Mathematica
for larger systems.

Maple example

Mathematica example




Additional digression on matrix properties
Singular value decomposition

It 1s possible to factor any real matrix A
into unitary matrices V and U together

with positive diagonal matrix X

A=UxV"
(6, 0 - 0
0 o, - 0
X={ . 5 . .

0 0 - oy


Presenter Notes
Presentation Notes
An unrelated digression that may be useful – singular value decomposition.


Singular value decomposition -- continued

Consider using SVD to solve a singular

linear algebra problem AX =B
A =UzV”

ZV<H\B>

iforo; >¢ i


Presenter Notes
Presentation Notes
Digression continued.


)
Consider an extended system of masses and springs:

Xiol X Aiti

i

Note : each mass coordinate 1s measured relative

to its equilibrium position x;

L=T-V :lmi)&f —lki(xm —X )2
2 i=1 2 i=0

Note: In fact, we have N masses; x, and x,,_,

will be treated using boundary conditions.
9/30/2024 PHY 711 Fall 2024 -- Lecture 16 20


Presenter Notes
Presentation Notes
Another example; this one is in your textbook.


2

x,=0 and x,,, =0

L=T-V =lmZN:5@2 _%ki(m —x, )
i=1 i=0

From Euler - Lagrange equations :
mx, = k(x2 — 2xl)
mx, = k(x3 —2x, + xl)
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Presenter Notes
Presentation Notes
Details for N masses.


Matrix formulation --

Assume  x,(t)= X,e

/Xl\
X2

X

N-1

\XN)

(2
~1

-1
2

0
-1
-1

0

2
—1

0 )
0

-1

2 )

Can solve as an eigenvalue problem --



Presenter Notes
Presentation Notes
Form of matrix equations.     Remaining slides will be discussed on Monday.     


> Avith(LinearAlgebra):

5 -1 0 0 0
-15 -1 0 0
> 4=|0 -15 -10
0 0 -1 5 -1
0 0 0 -1 5

5
6
A

5—V3
5+3
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Presenter Notes
Presentation Notes
Finding eigenvalues with Maple.


®
This example also has an algebraic solution --

From Euler - Lagrange equations :

mx, = k( X

Tl‘y : xj (t) — Ae—za)tﬂqa]

—2x, +Xx, ) withx, =0=x, ,

_COZAe—ia)Hiqaj :E(eiqa _2+e—iqa )Ae—ia)Hiqaj
m

—w’ = %(2 cos(qa)—2)

— ﬁsm (qaj

m 2


Presenter Notes
Presentation Notes
Analytic methods for this highly symmetric case.


From Euler-Lagrange equations -- continued:

mx; = k(xj+1 —2x; + x]._l) withx, =0=x,,
o 4k .
Try: x,()=dAe™™ ™ =o' ="sin’ (ﬂj
m 2
o 4k .
Note that:  x,(¢) = Be ™" = " =—sin’ (%j
m

General solution:
xj (t) _ ER(Ae—ia)Hiqaj n Be—ia)t—iqaj)
Impose boundary conditions:
X, (1) = %(Ae"m + Be‘“‘”) =0

Xy, (t) _ ER(Ae_iniqa(NH) n Be—ia)t—iqa(NH)) ~0


Presenter Notes
Presentation Notes
Setting the boundary values.


Impose boundary conditions -- continued:
X, (1) = fR(Ae + Be"a”") 0
() =R A | g
—>B=—4
Xy () = ER(Ae“‘” (g0 — ey )) )
= sin(qa(N + 1)) =0
= qa(N+ 1) =vnr  where v=0,1,2---

\ /A
N +1

qa =


Presenter Notes
Presentation Notes
Boundary conditions continued.


.

Summary of results:

= w; :ﬁsin2 il x, =R 2iAsin( e j
m 2(N +1) N +1

v=0,1.N n=12,....N

0

] 1 2 3 4 3 6
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Presentation Notes
Plot of the results.
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