PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103
Notes for Lecture 17 — Chap. 1-6 (F & W)
Review
1. Some advice about problem solving

2. Solutions of selected problems

3. Systematic review
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Date F&W Topic HW
1 Mon, 8/26/2024 Introduction and overview #1
2 |Wed, 8/28/2024 |Chap. 3(17) Calculus of variation #2
3 |Fri, 8/30/2024 |Chap. 3(17) Calculus of variation #3
4 Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
5 |Wed, 9/04/2024 |Chap. 3 & 6 Lagrangian equations of motion #5
6 |Fri, 9/06/2024 |Chap. 3 & 6 Lagrangian equations of motion H#0
7 |Mon, 9/09/2024 |Chap. 3 & 6 Lagrangian to Hamiltonian formalism #/
8 |Wed, 9/11/2024 |Chap. 3 & 6 |Phase space #38
9 |Fri, 9/13/2024 |Chap. 3 & 6 Canonical Transformations
10 Mon, 9/16/2024 Chap. 5 Dynamics of rigid bodies #9
11 Wed, 9/18/2024 Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024 Chap. 5 Dynamics of rigid bodies #11
13 [Mon, 9/23/2024 Chap. 1 Scattering analysis #12
14 Wed, 9/25/2024 Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024 Chap. 1 Scattering analysis #14
16 Mon, 9/30/2024 Chap. 4 Small oscillations near equilibrium
» 17 \Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-10/24
18 |Fri, 10/4/2024 Chap. 4 Normal mode analysis THE-10/3-10/24
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Physigs - Thursday -
Colloquium FEFEHWES
2024

In situ Vibrational Spectroscopic Studies of Chemical and Molecular
Interactions in Metal-Organic Frameworks 4 P M

Precisely characterizing the interactions of gaseous molecules in nanoporous OI' 101
materials such as metal-organic frameworks (MOFs) is challenging yet crucial to N
understand guest adsorption behaviours and host structure features of importance
for applications such as gas storage, separation, purification, and catalysis. Such
guest-host and guest-guest interactions range from strong chemical reactive
binding to weak physical non-reactive (e.g., van der Waals) ones, which
complicate the measurement and analysis. In our studies we show that
vibrational characterization, particularly infrared spectroscopy conducted under
in situ conditions, is arguably one of the most discriminating tools to probe the
nature and strength of these interactions and reveal mechanistic information
pertaining to kinetics and energetics of adsorption processes. We first examine
how H O reactively interacts with three types of prototypical MOF compounds:
1) MOFs with saturated metal canters, 2) MOFs with unsaturated metal centres,
and 3) MOFs with defects, and denive a clear microscopic view about the
degradation pathways of some complex MOF structures under moisture. We then
show results for co-adsorption of non-reactive species such as CO, CO, CH ,
CH, in several benchmark compounds. Such processes remain poorly
understood due to the difficulties inherent in current characterization methods : .
and we establish several unexpected findings with respect to the principles University of
governing co-adsorption. For example, binding energy alone is not a sufficient

indicator for prediction of molecular exchange and stability—instead, kinetics North Texas
can govern adsorption in nanoconfined spaces. We also find an unusual

synergistic effect involving co-adsorption of NH_ and H O with a variety of small
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Comments about the exam
Will be available tomorrow (10/3/2024)

Due T Sun Mon Tue Wed Thu Fri Sat
1 2 3 ! 5

2, 10 11 12

* |t must be your own work, under the honor code

* Please make sure that the grader can read your
answers.

« Grading is based on the correct answer AND the correct
reasoning to arrive at the correct answer. Full credit is
obtained only with both. Partial credit also benefits from
clear reasoning and results.

* Please meet with me only (in person or by email) if you
have questions about the exam.



Comments on exam

The purpose of the exam is to help you with your
understanding of the material

In accordance with the honor code, the solutions you
hand in must be your own work. That is, if you have any
guestions, please consult with me, but no one else.
You will get credit for the reasoning and derivations as
well as for the right answer. You may use software such
as including Mathematica, Maple, etc. as long as you
include all input/output with your exam.

This is an open “book” exam which means that you can
consult textbooks and lecture notes as long as you cite
themlt is often helpful approach problems in more than
one way — recalling that undergraduate physics is still
true.



Steps for tackling a problem —
1. What are the basic concepts that apply to this
problem?
2. Write down the fundamental equations specific to
this situation.
Solve.
Check.

il



Example Problem -- HW #5

y
A
sin? v —cosasina 0
I = md? —cosasina 14+cos?a 0
0 0 2

1. The figure above shows a rigid 3 atom molecule placed in the x-y plane as shown. Assume
that the rigid bonds are massless.
a. Find the moment of inertia tensor in the given coordinate system placed of mass M in
terms of the atom masses, bond lengths d, and angle a.
b. Find the principal moments moments of inertia /4, /9,13 and the corresponding principal

axes.

1, = mdg(l —cosar) Iy = -mdQ(I +cosa) I3 = 2md.
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Example solution — Problems 5&7
For given constants m,q,c, E,, B,, consider the Lagrangian

L(x,y,2,%,,2) = lm(;'c2 + 3 +z‘2)—iz'(Eoct+Box)
C

2
Initial conditions: x(¢)=0,y(¢)=0,z(¢) =0
x(t)=0,y(¢)=0,z(¢) =0
Find Hamiltonian and solve the canonical equations of motion.

o o
oL q
D. ———mz——(E ct+B x)
0z c

: : 1 2 a2
H:px)'c+pyy+pZZ—L:5m(x2 +y° +z2)

Px P ) (PZ _%(Eoct+BOx))2
2m 2m 2m

H(X,9,2,p,. P, P.ot) =



2
p’ Py . (pz —%(Eoct + Box))
2m 2m 2m
Some of the canonical equations:

H(x,y,Zanapy’pz’ )

oH
p.=——=0 =p = constant—( Z—g(EOCf-FBO)C)j =()

0z c 0
H
z= g -4 (Eoct+BOx)
op. mc
. __OH _ q’B,
= — E ct+ B x
Px x mc (£, )
. OH : ’B
X = oy :xszz—ng(Eoct—l—Box)
op, m m m-c
E . (gB
When the dust clears -- x(¢) = o€ | ¢ sm(q L tj —t
B, \ gB, mc

E B,
z(t) = o€ e —cos(q j+1
B, gB, mc
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PHY 711 — Assignment #12
Assigned: 09/23/2024  Due: 9/30/2024

1. Consider a particle of mass m moving in the vicinity of another particle of mass M, initially
at rest, where m << M. The particles interact with a conservative central potential of the

- (- ().

where r denotes the magnitude of the particle separation and Vj and ry denote energy and
length constants, respectively. The total energy of the system FE is constant and E = V4.

form

(a) First consider the case where the impact parameter b = 0. Find the distance of closest
approach of the particles.

(b) Now consider the case where the impact parameter b = ry. Find the distance of closest
approach of the particles.
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o2 2)

E=—mir*+V(r)+
> (7) >

b=0 __ rlr,
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PHY 711 -- Assignment #14

Assigned: 9/27/2024 Due: 9/30/2024
Continue reading Chapter 1 in Fetter & Walecka.

e Work Problem #1.16 at the end of Chapter 1 in Fetter and Walecka. Note that you might want
to use the equation in FW #1.15 or the equivalent equation derived in class.

In this case, V(r)= 12 and energy is E
r

b*E

2
r

E= %m?z +V(r)+

can be analyzed from »(¢) > r(y)

2y, +0=1
,
I b/r
H:ﬂ—2;(max:7z—2jdr 4
g b’
min 1—
\ r
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Lecture 15 has the
i blr opposite sign and is
not correct.

1
~ 2sin@| do

d_a_ b |db
dQ) siné|deé
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Systematic review

1. Basic principles
Scattering analysis
Mechanics of central forces

0.5 1

0.4 ¢?
03_ I/eﬁ (r) T V(r) +

02

0.1-\
) W S r

1.0 1.2 i6 18 2.0

2
2mr

—0.1
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Systematic review

2. Accelerated Coordinate Systems
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Physical laws as described in non-inertial coordinate
systems

> Newton’s laws are formulated in an inertial frame of
reference { Ao}

» For some problems, it is convenient to transform the
the equations into a non-inertial coordinate system
{éi (t)} Note that in
a0 A addition to
3 e3 . .
rotation, linear
acceleration can

~0 ~ also contribute to
e, e, . .
non-inertial
e’ effects.

¢
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Comparison of analysis in “inertial frame” versus “non-
inertial frame”

Denote by €, an fixed coordinate system in 3 orthogonal directions

Denote by e, a moving coordinate system in 3 orthogonal directions

3 0 3 3 A~
(ﬁj :Zﬂé?:dezel +ZVldel
inertial i=1 dt i=l1 dt i=1 dt

dV 3. dv.. This represents the time rate
Define: (Ej = Z—edtl i of change of V measured
body i=1

within the e frame.
3 A

:(Cl’Vj :(de —I—Zl/ldel
dt inertial dt body =1 dt

10/2/1024 PHY 711 Fall 2024 -- Lecture 17 17




e’ example

Z

V(t,)
V(t,)
y

X

0 dv(t 0
dv(y) _dV, (@), y()erdT/z(f)
dt dt dt dt

//

e example — same motion described in moving
coordinate system.
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Properties of the frame motion (rotation only):

A de =dQe.
dQ e, 4
” Y Here dOQ=dO% de, :_dQey
dQ . = de =dQ) x e
0=—3%X
dt de dQ .
— =X
dt dt
CTé:dQA @:(X)Xé
> & dt

Note that the coordinate e

1s pointing out of the screen.
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Properties of the frame motion (rotation only):
e, +de

4é.
I~ ~ dé dQ A dé a
ds2 ar dr dt
Note that e_ is pointing out of the screen.
e L+ déy
el rotation
e .

Rotation about x-axis: g lmatnx

o ) (G rme ol )

(oot ontamn)e) (e SN
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More details

Rotation about x-axis:

e, (1 0)(e, e +de cos(dQ) s1n(dQ) e,
e.) L0 1)le e +de —sin ( dQ COS dQ)

de, cos(a’Q) sin (dQ) dQ

de, —sin(dQ) cos(dQ)- 0 eZ
e, +de, =cos(dQ)e, +sm(dQ

e, +de. =—sin(dQ)e, +cos(dQ)e,

Taylor's series

f(x,+dx)= f(x,)+dx Z’f

+....

X0

dzf
d 2
+2( x) dx?

X0

sin(dx) = a’x—%(a’x)3 .. @dx  cos(dx) = 1—%(dx)2.... ~ 1



Propertles of the frame motion (rotation only):

de—dOxe de_dLQ . de_ e
d dr i
+de

"dg
> 5

Rotation about x-axis:

de, 0 dQjfe, A A o
~ =dQey—dQe z=dOxxe
de. —-dQ 0 )le, g

Define axial vectors dQ =dQx

10/2/1024
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Properties of the frame motion (rotation only) -- continued

(dV j (dV j 3. de.
_ — | = 4+ Vz i
dt inertial dt body i=1 dt

(ﬂj :(ﬁj +0)><V:((ij +(0><]V
dt inertial dt body dt body

Effects on 2"d time derivative -- acceleration (rotation only):

(i) o\ o
As -1 L] vexP| | +oxV
dt dt inertial dt body dt body

2 2
(d YJ =(d YJ +2wx(ﬂJ +d—me+(y)><(x)><V
dt inertial dt body dt body dt




Application of Newton’s laws in a coordinate system which
has an angular velocity @ and linear acceleration a
(Here we generalize previous case to add linear acceleration a.)

Newton’s laws; Let r denote the position of particle of mass m:

d’r
m( 2 j — Fext
dt inertial

d’r d’r dr do
m| — =m|a+|—5 +20 x| — +—xr+oxoxr |=F_
dt ). o dt o dt ),,, dt
inertia ody oay

Rearranging to find the effective acceleration within the non-inertial frame --

(dzrj (drj de
m| —- =F,_ —-ma —2mox| — —M——XTI — MmO XOXY
dt” ), At )yoq, dt

() t

Coriolis Centrifugal
force force



Latitude

y (east) North

an L

z (up)

X (south) Equator

Microzoft llustration

@, = ®,cosd

Motion of a Foucoult Pendulum

x(t) =X, cos(\/%t)cos(a)g)
y(t)= - X, cos(\/%t)sin(a)j)
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Chapter 3 -- Calculus of variation —
Consider a family of functions y(x), with fixed end points

y(x;) =y, and y(x,) = y, and an integral form L({y(x),%},xj.
X

Find the function y(x) which extremizes L ({ y(x), ?} : xj.
X

Necessary condition: oL =0

1-

Example: y 0'6::

1,1 ]
L= [J@P+@f J——" |
(0,0) 0 0.2 0.4 0.6 0.8

X



After some derivations, we find

| 5%
dx

X,y

jx,y

A
-]

L/
oy

B
= | =
V). @

dx

Note that this is a
“total”’ derivative

10/11/2023

(o
_J (@jx

of

]x,dy v+ _[ G(dy / dx)
Cdl( o

o dx |\ O(dy/dx)

" dx

d

o

dx

*

[G(dy / dX)jx,y

=0 forallx, <x<x,

oydx=0 forallx, <x<x

J
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Summary --

dy

Optimizing [ = j f(y,— o ,X)dx - for fixed y(x,) =y, and y(x,) =y,

[y of Y
51_;[ [@}jﬂyéwr (G(dy/dx)lyé(dxj dx

" dx -

(Zf] (j (6 da];d j =0 forallx; <x<x,
Y di L (dy/ dx) ~y_ | Euler-Lagrange equation

Question -- what would be the Euler-Lagrange-type relation for

dy d’y
dx dx®’

optimizing [ = J- f(, x)dx - for fixed y(x;) =y, and y(x,) = y,



We are now going to shift notation in order to
apply the calculus of variation formalism to

Hamilton's principle and Lagrangian mechanics.
X —>1

y(x) = ¢q(?)

dy

E—W"(l‘)



Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

S = jL q.q}:t)dt jL({yZ} jdt

Simple example. vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

: d’
Newton's formulation: m dtév =—mg
Resultant trajectory: y() =y, +vit—Lgt’

Lagrangian for this case:

1 (dy ’
L=—m|—=| —m
2 (dtj &



Now consider the Lagrangian defined to be :

y(f) — f
Kinetic Potential
energy energy

In our example:

o)==l ) e

Hamilton's principle states:

Ly
S = j L({ y(t),j—);},tjdt 1s minimized for physical y(7):
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Condition for minimizing the action 1in example:

1 (ay)
S=\l—m| = | —m dt

Euler-Lagrange relations:

d .
j—mg—amyzO

ddy 1 2
S . )=y +vi—Lgt



Modification of Lagrangian due to electric and magnetic fields
For a single particle of charge ¢ using cartesian coordinates and cgs units.
L= L(x,y,z,)'c,j/,z',t) =7-U

T=im(#+5*+2)  U=q®(r,t)-Li-A(r,)
C

where E(r,7)=-VO(r,t)—— B(r,t)=VxA(r,¢)



Introducing the Hamiltonian --

Lagrangian picture
For independent generalized coordinates g_(#):

L=L({g,®}{g, O})
d oL oL
dt 0q. 0Oq

= Second order differential equations for g_(¢)

=0

o)

Switching variables — Legendre transformation

Define:  H =H({g, ()} {p,()}1)

L
szqo,pa—L WherepG:%

oL oL oL
dH =N dp +p di —dg - a5 |-ZL a
;(% p_ + pddq, ” q, 5 qgj >



Hamiltonian picture — continued

H=H({g, O} {p, 0O}1)

H:anpa_L where p0=a—,L
- oq.,

OL OL oL
dH = 1 dp +p dg ———dg ——dg_ |——dt
;[% R 610] >

= a—quG+6—Hdpa +6—Hdt
~\ 0q_ op., ot
OH oL d oL _. oH oL

Ps ="~

op. og_ dt 6§ og ot

o)

oH
ot



Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L =L ({qa 0},{4, (1)}, t)
2. Compute generalized momenta: p_ = %

3. Construct Hamiltonian expression: H = an p.—L

4. Form Hamiltonian function: H = H ({% (Gt)} : { D, (t)} : t)

5. Analyze canonical equations of motion:

dq, OH dp, B ﬂ
dt  Jp, dt oq._
Note that when 4, =(0 and/or 4pe =(0 and/or at = ot =()
dt dt dt ot

we have constant(s) of motion that can be used to help the analysis.
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