
8/28/2024 PHY 711  Fall 2024 -- Lecture 2 1

PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin103

Lecture notes for Lecture 2 
Chapter 3.17 of F&W 

Introduction to the calculus of variations

1. Mathematical construction

2. Practical use

3. Examples

Presenter Notes
Presentation Notes
The topic of “calculus of variation” is covered in Chapter 3, Section 17 of your textbook.     We will study the mathematical formalism first before showing how it is useful for studying mechanical systems.
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Presenter Notes
Presentation Notes
There is a short problem on this subject that will be due on Monday.
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4 PM

Olin 101
Refreshments at 3:30 PM

Olin Lobby
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The “calculus of variation” as a mathematical 
construction.
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According wikipedia –
Joseph-Louis Lagrange (born 
Giuseppe Luigi Lagrangia or 
Giuseppe Ludovico De la 
Grange Tournier; 25 January 
1736 – 10 April 1813), also 
reported as Giuseppe Luigi 
Lagrange or Lagrangia, was 
an Italian mathematician and 
astronomer, later naturalized 
French. He made significant 
contributions to the fields of 
analysis, number theory, and 
both classical and celestial 
mechanics.
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According to Wikipedia – 
Leonard Euler (April 7, 1707-September 18, 
1783) Swiss mathematician, physicist, 
astronomer, geographer, logician and 
engineer who founded the studies of graph 
theory and topology and made pioneering 
and influential discoveries in many other 
branches of mathematics such as analytic 
number theory, complex analysis, and 
infinitesimal calculus. He introduced much of 
modern mathematical terminology and 
notation, including the notion of a 
mathematical function. He is also known for 
his work in mechanics, fluid dynamics, optics, 
astronomy and music theory. 
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In Chapter 3, the notion of Lagrangian dynamics is developed; 
reformulating Newton’s laws in terms of minimization of related 
functions.  In preparation, we need to develop a mathematical 
tool known as “the calculus of variation”.

Minimization of a simple function

0=
dx
dV

local 
minimum

global 
minimum

Presenter Notes
Presentation Notes
First we should review the notion of a minimum in a continuous function.     Here is a plot of V(x) showing two different minima at two different points x.
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Minimization of a simple function

0=
dx
dV

local 
minimum

global 
minimum

0    :conditionNecessary 

.maximized)(or  minimized is )(for which 
 of  value(s) thefind ,)(function  aGiven 

=
dx
dV

xV
xxV

Presenter Notes
Presentation Notes
We see from this plot that a condition for a function to have a minimum at a point is that its derivative is zero at that point.      You see in this example another point where dV/dx, but there is not a minimum.      So we say the dV/dx is a necessary but not sufficient condition on having a minimum.
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Functional minimization of an integral relationship
Consider a family of functions ( ), with fixed end points

( )  and ( )  and an integral form ( ), , .

Find the function ( ) which extremizes ( ), , .

Necessary

i i f f

y x

dyy x y y x y L y x x
dx

dyy x L y x x
dx

  = =     
  
    

 condition:    0Lδ =

( ) ( )
( )
∫ +=
1,1

0,0

22

:Example

dydxL

Presenter Notes
Presentation Notes
The calculus of variation also searches for minima, but instead of finding a point where a function has a minimum,  we search for a functional form that minimizes the numerical value of an integral.
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Difference between minimization of a function V(x) and 
the minimization in the calculus of variation.

Minimization of a function – V(x)
Know V(x)      Find x0 such that V(x0) is a minimum.

Calculus of variation
For  want to find a function ( )
that minimizes an integral that depends on ( ).
The analysis involves deriving and solving a differential
equation for the function ( ).

i fx x x y x
y x

y x

≤ ≤

Presenter Notes
Presentation Notes
Comparison 
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( ) ( )
( )

(1,1)
2 2

0,0

21

0

Example:

   1

L dx dy

dy dx
dx

= +

 = +  
 

∫

∫
1

1
0

1

2
0
1

2 2
3

0

Sample functions:

1( )             1 1.4789
4

( )             1 1 2 1.4142

( )            1 4 1.4789

y x x L dx
x

y x x L dx

y x x L x dx

= = + =

= = + = =

= = + =

∫

∫

∫

Presenter Notes
Presentation Notes
For this example, we can evaluate the distance along a curve between two points x=0,y=0 and x=1,y=1 as a normal integral over x as shown.
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Calculus of variation example for a pure integral function

0     :conditionNecessary 

.,),(,),(   where

,),( extremizes which )(function   theFind

=
















≡


































∫
L

dxx
dx
dyxyfx

dx
dyxyL

x
dx
dyxyLxy

f

i

x

x

δ

( ) .
/

:Formally

)()( )(                  

 )()()(let  ,any At 

,,

dx
dx
dy

dxdy
fy

y
fL

dx
xdy

dx
xdy

dx
xdy

xyxyxyx
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i

x

x yx
dx
dyx
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0

Comment on partial derivatives -- function   (
( , ) ( , )l

, )

im
b

da

f a da b
a

f a b
a da a

f b
f f

→

+ − ≡ ≡ 


∂ ∂
∂ ∂

b a

df da bf f
a

d
b

∂ ∂
∂ ∂

   = +   
   

a b
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Comment about notation concerning functional dependence 
and partial derivatives
Suppose , ,  represent independent variables that determine a function :
We write ( , , ).  A partial derivative with respect to  implies that we
hold ,  fixed and infinitessimally change 

x y z f
f x y z x

y z x
f
x

 ∂

 ∂ 0, ,

, , ) ( , ,( )lim
y z y zx

x y z f x z
x

x yf
∆ →

∆

 ∆
+ =  

 

−
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After some derivations, we find

( )

( )

( ) fi
yx

dx
dyx

fi

x

x yx
dx
dyx

x

x yx
dx
dyx

xxx
dxdy

f
dx
d

y
f

xxxdxy
dxdy

f
dx
d

y
f

dx
dx
dy

dxdy
fy

y
fL

f

i

f

i

≤≤=



















∂

∂
−








∂
∂

⇒

≤≤=

































∂

∂
−








∂
∂

=










































∂

∂
+








∂
∂

=

∫

∫

 allfor     0  
/

 allfor    0
/

    

/

,,

,,

,,

δ

δδδ

Note that this is a
 “total” derivative

Presenter Notes
Presentation Notes
Using calculus to simplify the integral.
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“Some” derivations --

( )

( ) ( )

,

, ,

Consider the term

:
/

If ( ) is a well-defined function, then  

/ /

f

i

f

i

x

x x y

x

x x y x y

f dy dx
dy dx dx

dy dy x y
dx dx

f dy f ddx y
dy dx dx dy dx dx

δ

δ δ

δ δ

  ∂       ∂     
  = 
 

      ∂ ∂    =       ∂ ∂          

∫

∫

( ) ( )
, ,

                                              

      = 
/ /

f

i

f

i

x

x

x

x x y x y

dx

d f d fy y dx
dx dy dx dx dy dx

δ δ
     ∂ ∂   −      ∂ ∂       

∫

∫

*

Presenter Notes
Presentation Notes
Some details.
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Note that the     notation is meant to imply a general
 infinitessimal variation of the function ( )

y
y x

δ
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Clarification -- what is the meaning of the following statement:

  

Up to now, the operator   is not well defined and meant to represent

a general infinitessimal difference.   Suppose t

dy d y
dx dx

δ δ

δ

  = 
 

2 2

2

hat , where 

appears in the functional form somehow.  For most functional forms

that one can think of, = .  One can show this to be

the case even for ( , )  

( , ) ( , )

(where  a

y x a y x a

y x

dyy a
da

d d
dxda dadx

dy x a x

δ ≡

= ( )( )1
2

= 1 ln .

(Note that here we are being imprecise wrt partial and total derivatives.)

, ) ( , ) aa y x ad x a x
dxda dadx

−= +
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“Some” derivations (continued)--

( ) ( )

( ) ( )

, ,

, ,

 
/ /

     =
/ /

     =                  0                

f

i

f

i

f

i

x

x x y x y

x
x

xx y x yx

d f d fy y dx
dx dy dx dx dy dx

f d fy y dx
dy dx dx dy dx

d f
dx

δ δ

δ δ

     ∂ ∂   −      ∂ ∂       

      ∂ ∂   −      ∂ ∂         

∂
−

∂

∫

∫

( )
,

/

f

i

x

x x y

y dx
dy dx

δ
  
      
∫

( ), ,

Euler-Lagrange equation:

  0    for all 
/ i f

dyx x ydx

f d f x x x
y dx dy dx

   ∂ ∂ ⇒ − = ≤ ≤    ∂ ∂     
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( ) ( )

( ) ( )

, ,

, ,

 
/ /

     =
/ /

     =                  0                

f

i

f

i

f

i

x

x x y x y

x
x

xx y x yx

d f d fy y dx
dx dy dx dx dy dx

f d fy y dx
dy dx dx dy dx

d f
dx

δ δ

δ δ

     ∂ ∂   −      ∂ ∂       

      ∂ ∂   −      ∂ ∂         

∂
−

∂

∫

∫

( )
,

/

f

i

x

x x y

y dx
dy dx

δ
  
      
∫

Clarfication – Why does this term go to zero?

Answer --
By construction ( ) ( ) 0i fy x y xδ δ= =
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Recap --

( )

( )

( ) fi
yx

dx
dyx

fi

x

x yx
dx
dyx

x

x yx
dx
dyx

xxx
dxdy

f
dx
d

y
f

xxxdxy
dxdy

f
dx
d

y
f

dx
dx
dy

dxdy
fy

y
fL

f

i

f

i

≤≤=
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−
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⇒

≤≤=

































∂
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−








∂
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=










































∂

∂
+








∂
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=

∫

∫

 allfor     0  
/

 allfor    0
/

    

/

,,

,,

,,

δ

δδδ

Here we conclude that the integrand has to vanish at every 
argument in order for the integral to be zero
a. Necessary?
b. Overkill?
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( )

( )
0

/1

/              

 0  
/

1,),(      1

1)1(;0)0( -- points End    :Example

2

,,

21

0

2

=













+
−⇒

=



















∂

∂
−








∂
∂







+=















⇒






+=

==

∫

dxdy

dxdy
dx
d

dxdy
f

dx
d

y
f

dx
dyx

dx
dyxyfdx

dx
dyL

yy

yx
dx
dyx

( )2 2

Solution:

/       '
11 /

( ) '     

dy dx dy KK  K
dx Kdy dx

y x K x C

 
  = = ≡
  −+ 
⇒ = + ( )y x x=

Presenter Notes
Presentation Notes
Your homework problem is very similar to this.      
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y

x

xi  yi

xf  yf

( )

( )
0

/1

/              

 0  
/

1,),(      12

:Example

2

,,
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dxdy

dxxdy
dx
d

dxdy
f

dx
d

y
f

dx
dyxx

dx
dyxyfdx

dx
dyxA

yx
dx
dyx

x

x

f

i

π

Lamp shade shape y(x)

Presenter Notes
Presentation Notes
Here is another example of the use of calculus of variation.
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( )

( )

2

12

2

1

2

2

1 2
1 1

/ 0
1 /

/

1 /

1

1

( ) ln 1

d xdy dx
dx dy dx

xdy dx K
dy dx

dy
dx x

K

x xy x K K
K K

 
 − =
 + 

=
+

= −
 

− 
 

 
⇒ = − + −  

 

Presenter Notes
Presentation Notes
After these steps, the solution is found up to some constants.
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2

2 3( ) ln
1

y x
x x

 +
=  

+ − 

2

1
1 1

2 2

General form of solution --

( ) ln 1x xy x K K
K K

 
= − + −  

 

1 2  1  S anduppose  2 3 KK = +=
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2

2 3( ) ln
1

y x
x x

 +
=  

+ − 

22

1

2 1 15.02014144

                                            (according to Maple)

dyA x dx
dx

π  = + = 
 ∫

Presenter Notes
Presentation Notes
Evaluating results for particular boundary values.
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Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

( ) ( ) ( )

( )
( )a

xaxy

ay
dx

yd

adxay
dx
dyI

yyxy

sin
sin)(

0

  :equation Lagrange-Euler

0constant for      

:integral  theminimizethat 
 11 and 00 with  curves allConsider 

2

2

1

0

2
2

=⇒

=+

>









−






=

==

∫

Presenter Notes
Presentation Notes
Another example.
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( )     0  
/

:  extremize tocondition necessary  a

,,),(for        :Review
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,,),(for     that  Note

Euler-Lagrange equation

Alternate Euler-Lagrange 
equation

Presenter Notes
Presentation Notes
Summary and extension.
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