PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes for Lecture 20: Chap. 4&7 (F&W)

One dimensional motion of many coupled masses
= continuous elastic string and related systems

1. Comments on linear vs. non-linear differential
equations — considering beyond harmonic
oscillations

2. Back to linear analyses -- masses coupled by
springs €=2mass continuum coupled by string

3. Mechanics and mathematics of one-dimensional
continuous system
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Presenter Notes
Presentation Notes
The one dimensional motion of a large number masses interconnected with springs provides a model of longitudinal motions of a continuous elastic spring and related topics covered in Chapter 7 of your textbook


11 (Wed, 9/18/2024 |Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024 |Chap. 5 Dynamics of rigid bodies #11
13 [Mon, 9/23/2024 |Chap. 1 Scattering analysis #12
14 Wed, 9/25/2024 |Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024  |Chap. 1 Scattering analysis #14
16 [Mon, 9/30/2024 |Chap. 4 Small oscillations near equilibrium
17 \Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-9/24
18 [Fri, 10/4/2024 |Chap. 4 Normal mode analysis THE-10/3-9/24
19 Mon, 10/7/2024 Chap. 4 ___[INormal mode analysis in multiple dimensions __[THE-10/3-9/24
20 Wed, 10/9/2024 Chap. 4&7 |Normal modes of continuous strings THE-10/3-9/24
21 Fri, 10/11/2024 |Chap. 7 The wave and other partial differential equations
22 Mon, 10/14/2024 |Chap. 7 Sturm-Liouville equations
23 Wed, 10/16/2024 Chap. 7 Sturm-Liouville equations
Fri, 10/18/2024 |Fall Break
24 Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions

10/09/2023
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Presenter Notes
Presentation Notes
Start reading Chapter 7.


Physics - Thursday -

Colloquium [SEr¥esry
2024

A journey to SPArc: Spot-scanning Proton Arc 4 PM

therapy Olin 101

Radiation therapy is one of the main treatment modalities in the
management of cancer. Proton beam therapy uses a charged
particle, Hydrogen, to irradiate the tumor. One of the biggest
advantages of using proton compared to X-ray is to reduce the
integral dose to the patient's body which is critical to many
patients, especially the pediatric cancer population. As of today,
more than 40 proton therapy centers are operating in the United
States, and over 200 particle therapy centers are either operating
clinically or under construction globally. Teday, Atrium Health and

Wake Forest School of Medicine bring the first proton therapy Dr. }{uanfeng
center to North Carolina, downtownl Charlotte, which directly )
benefits the cancer patient (LE‘.O) Dng

The concept of Spot scanning Proton Arc therapy (SPArc) was Beaumont Proton

first introduced by Dr Ding and his team in at William Beaument
University Hospital, Corewell Health in 2015. It has become one
of the most important merging treatment modalities in
radiation oncology. The technique enables the dynamic
rotational proton gantry while irradiating the proton spot and
switching energy layers in a submillimeter accuracy. Through an

Therapy Center
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®
Digression — comment on linear vs non-linear equations

Linear oscillator equations (ODE example from one dimension)

1 d’v
Vi(x)= V(xeq)+§(x—xeq)2 3 L.

| |
- — sz = — ma)2x2
2
' I, 1 2.2
L(x,x) =—mx ——mwx
2 2
Euler-Lagrange equations: X=—-w’x
Superposition property of linear equations: --

Suppose that the functions x, (¢) and x, (¢) are solutions

= Ax, (¢)+ Bx, (t) are also solutions (all 4, B)


Presenter Notes
Presentation Notes
Digression on the special properties of linear equations in contrast to complications for non-linear equations.


.
Non - linear oscillator equations (example from one dimension)

1 d’ 1 d’
V(x)zV(xeq)Jra(x—xeq deZ/ +Z!(x—xeq de:

1
:>—ma)2(x2+lex4j
2 2

L(x,ic)z %micz —%ma)z(xz +%&c4j

Euler - Lagrange equations :

+ ...

X:—a)z(x+6x3)

Superposition-- no longer applies


Presenter Notes
Presentation Notes
An example of the effects of non-linearity.


5>O/

/
/ g=0

8|<0
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Presenter Notes
Presentation Notes
Plot of nonlinear potentials.


Non - linear example - - continued

L(x,)'c): %mxz —%ma)z(xz +%£x4j

Euler - Lagrange equations :
)'c'+a)2(x+gx3): 0
Perturbation expansion:
x(t) = X, (t) + £X, (t) + 52x2 (t) + ...
Euler-Lagrange equations:
zero order (factor of £°): X, + w’x, =0

first order (factor of £'): X, + @’x, + w’x, =0


Presenter Notes
Presentation Notes
Approximate solution to example non-linear equation.


Non - linear example - - continued

X+ o’ (X + &x’ ) =0 Initial conditions :
Perturbation expansion : x(0)= X, x(0)=0
x(t)=x,(¢)+ex,(t)+...
Euler - Lagrange equations :
zeroorder: X, +@’x, =0 = x,(1) = X, cos(wr)

first order: ¥, +a’x, +@’x, =0
3

= X, () +@’x,(t) =—X, cos’ (wt) = —%(3cos(a)t)+cos(3a)t))

3

= xl(t)z—SXwo2 {Swt sin(a)t)+%[cos(a)t)—cos(3a)t)]}

x(t) =X, cos(a)t) —& ;C(jz {Swt sin(a)t) + i[cos(a}t) — cos(3a)t)]} + 0(82)



Presenter Notes
Presentation Notes
Non-linear equation continued.


Non - linear example - - continued

i+’ (x +&x’ ) =0 Initial conditions :
x(0) =X, x(0)=0

Perturbation expansion:
x(t) =X, (t) + &£X, (t) +...

Previous result (blows up at large ¢):
3

x(t)=X,cos(wt)—¢ ;Z)Oz {3wt sin (ot )+ i[cos(a)t) —~ cos(3a)t)}} - 0(52)

By rearranging terms (allowing effective frequency to vary):

x(t)=X, cos(w(l +& 3;(5 ]t] —& 3;(5)2 {cos (1) —cos(3wr )} + 0(52)



Presenter Notes
Presentation Notes
More details.


Foro=1, X,=1, €=05 ~
Regrouped/g\xpansion / \

: ~ & L\ L\
N 5 \\///9 NVZATERPZ
| N/ \
N

Numerical solution according to Maple

As

| Original perturbation
expansion

= 0.5

0
~ 0.5
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Presenter Notes
Presentation Notes
Plot of results.


Back to linear equations —

Longltudlnal case: a system of masses and springs:

i=0 i=0
= mX; = k(x. —2x. + xl._l)

i+1 I

Now 1magine the continuum version of this system:

. o’
x. ()= plx,t) X = ’;j
ot
0’ 2
X, —2X +x_ == . (Ax) where Ax=x, , —x, =x, —x,_,
X
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Presenter Notes
Presentation Notes
Showing how the case of the extended mass and spring system approximates the continuous elastic string.


More details

Longitudinal case

Consider Taylor's series (focussing on x-dependence)

du| 1 »d |l 1 sd’u 1 sd* i
+Ax) = +Ax——| +—(Ax +—(Ax +—(Ax
Hix )= Hx) dx |, 2( ) dx’ ; 6( ) dx’ ; 24( ) dx*
du|l 1 »diul 1 sd’u 1 sd*u
—Ax) = —Ax——| +—(Ax ——(Ax +—(Ax
i ) = () dx |, 2( ) dx’ ; 6( ) dx’ i 24( ) dx*
2 4
Therefore (Ar)’ L2 = ji(x+ Ax) + pr— &)~ 2u() = (Ax)* S 24
X, 12 dx” |
_ dop| | p(x+ Ax) + p(x — Ax) = 24(x)
dx* | (Ax)z

10/09/2023
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Discrete equation:  mX,; = k(xl.+1 —2x, + xl._l)
2 2
Continuum equation: m g ’;l = k(Ax)2 g ’él
ot Ox
0’ L _( kAx j@z u
ot m/Ax ) Ox°

system parameter with
units of (velocity)?

For transverse oscillations on a string

with tension 7 and mass/length o

(kij T
_ —
m/ Ax o
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Presenter Notes
Presentation Notes
Regrouping constants in terms of spring constant times increment of length and mass per unit length which combine to give a squared velocity for the longitudinal case.     For the transverse case, string tension is involved.


More details
Transverse case

10/09/2023

Net vertical force on increment of string:

7,sin0, — 7,51n6, = r;tan@, — r,tan o,

PHY 711 Fall 2023 -- Lecture 19
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Transverse displacement:

T \
_ N

p(x,t)
O’ 1 _ T O’ 1
o> o Ox’
Wave equation:
0" i _ o2 0" i
ot’ ox’
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Presenter Notes
Presentation Notes
The diagram shows how the y component of the net tension contributes to the transverse motion.


Lagrangian for continuous system :

Denote the generalized displacement by u(x,?) :

o L(ﬂﬁﬂ Ou. h

?

ox ot )
Hamilton's principle::

5Idtjde(y, OH Z’t‘ x,tjzo

Ox

oL 0 oL o0 oL
— — — —
ou ox 0(0ulox) ot o(ou/ot)



Presenter Notes
Presentation Notes
It is possible to adapt the Lagrangian formalism to this continuous system.


Euler - Lagrange equations for continuous system :
oL 0o oL 0 oL
ou ox 0(0ulox) ot o(oulot)

Example:

;o a_ujz_ t(ouY
2\ Ot 2\ Ox

2 2
8,;1_78,21 0
ot Ox

—> 0

2 2
8’?—028’1ij for (32:1
ot Ox o



Presenter Notes
Presentation Notes
The continuum version of the Euler-Lagrange equations result in the wave equation for this example.


Note that this is an example of a partial differential equation

2
O K 8’“ =0 Wherec—\/7 \/
ot* Ox” m/Ax

Often, it is useful to seek a
solution in terms of ordinary %
differential equations: ”?

H(x,t) = f(x)g(?)
O'u  ,0u

_0— 1 d’g(t) c df(x)_
ot ox” g(t) dt’ f(x) dx’



Presenter Notes
Presentation Notes
In the next several slides we will discuss solutions to the wave equation.     Note that the one dimensional wave equation has some special properties.


Solving partial differential equation using ordinary differential
equations — continued.

Suppose: p(x,1) = f(x)g(t)
OCu_ 20p_o_ o 1 de) < df(x)_,
ot’ ox’ g(t) dt’ f(x) dx’

Th lity 1 ible if
© CUALY 15 POSSIDIC ] We will work out

1 dzg(z‘): 1 and c’ dzf(x): ,  additional details

g(t) dr f(x) ax’ of this

. _ separation of
Figenvalue equations to be solved: variables
d%o(t d* 1 (x y) method a little

gz( ) =Ag(?) and fg ) _ ~f(x) later.

dt dx C



Digression on tools for solving ordinary differential
equations — Method of Frobenius

https://mathshistory.st-andrews.ac.uk/Biographies/Frobenius/

Ferdinand Georg Frobenius

Born: 26 October 1849
Berlin-Charlottenburg, Prussia (now
Germany)

Died: 3 August 1917
Berlin, Germany

Summary: Georg Frobenius combined
results from the theory of algebraic
equations, geometry, and number theory,
which led him to the study of abstract
groups, the representation theory of groups
and the character theory of groups. He also
developed methods for solving linear
differential equations.
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https://mathshistory.st-andrews.ac.uk/Biographies/Frobenius/

Simple example of ordinary differential equation:

2
Solutions of the differential equation: (d— + 1d_ —j f(r)=0

ar* rdr r

Frobenius method for finding solutions near » =0 :

Guess series solution form: f(r) = Z A
n=0

Evaluate: Of (r) = Z Aﬁr”” = 0 for each power of »**" to find
n=0

relationships between coefficients 4

and the condition for non-trivial 4, .
Example (thanks to F. B. Hildebrand):

A d?
O=2r—+(- 2r)——1
dr’
A0rF™" =0= ZA(S+n (2s+2n-1)7"" = (25 +2n+1)r""")

n=0

Condition for non-trivial 4,: s(2s—1)=0



Continued --
Example (thanks to F. B. Hildebrand):

n d?
O=2r—+(1- 2r)——1
dr

it =0= ZA ( s+n 2S+2n—l)rs+”_l—(2S+2n+l)rs+”)

n=0
Condition for non-trivial 4, : s(2s—1)=0

First solution: s=0
Coefficientof " : 4 . (2m+1)(m+1)—A4 (2m+1)=0

f,(r)= A0[1+r—|—72—|—3—3+ } Aye

Second solution: s = 3

Coefficientof " : 4 (2m+3)(m —|—1)—Am2(m +1) =0 _
, (infinite series,
/. (r) =4, p? [1+2r+2—r + 2 r3....] converges

3 35 3-5-7 slowly)




Simple example of ordinary differential equation:

2
Solutions of the differential equation: (d— + 1d_ —j f(r)=0

dr* rdr r

We can use the Frobenius method for this example;
In this case the series truncates.



B
Special properties of particular partial differential equations

General solutions u(x,?) to the wave equation:

2 2
g 'g —c’ g ’121 =0
ot Ox
Note that for any function f(g) or g(q):

ux,t) = f(x—ct)+g(x+ct) satisties the wave equation.

Because

82,u ) dzf(w) dzg(w)
2 =C 2 + 2
Ot dw aw” | __

w=x—ct

82ﬂ:£d2f(W) L g j

Ox* aw* aw*

w=x—ct



Presenter Notes
Presentation Notes
In the next several slides we will discuss solutions to the wave equation.     Note that the one dimensional wave equation has some special properties.


Initial value solutions u(x,?) to the wave equation;

attributed to D' Alembert : These functions

lwould be given

0" , 0% Ou
—C =0 where u(x,0) =@d(x)and —(x,0 ) = v (x
% 7 1(x,0) = p(x) (%( )=y (x)

Assume :
ux,t)=f(x—ct)+g(x+ct)
then: u((x0)=¢(x)=f(x)+g(x)

oL _ _ [dix)  dg(x)
5()@0) =y(x) = C( N j

= £(0-g(0) == [p(x)av
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Presenter Notes
Presentation Notes
This method by D’Alembert is based on the special property of the wave equation.


Solution -- continued: ux,t) = f(x—ct)+ g(x+ct)
then:  u(x,0)=p(x)= f(x)+g(x)

o, o) (A dgl
~50) =y ()= c[ " dx]

= ()~ g() =~ [y (x)dx

For each x, find f(x) and g(x):

£ - %(qf?(ﬂ Ly )

¢(x) =§[¢<x>+%fw(x')dx']

x+ct

= u(x,t) =%(¢)(x—ct)+g0(x+ct))+2ic j w(x'")dx'

x—ct


Presenter Notes
Presentation Notes
D’Alembert’s method continued.


Example:

=0.
2.
2

) 2

-4 -2 (
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Presenter Notes
Presentation Notes
An example.    (Use slide show to see animation.)


%xample ;

2
alg 2 T4 =0 where u(x,0)=0 and a'u(xO)—_ﬁe—xz/az
Ot Ox2 =
o ey = (et o)
2c
Note that >y — _Lz((x+ ct)e—(x+cz)2 LA (x ct) (et} /az)
ot o
t=0.
1-
0.5
_iﬁl — !5 ] a T é I N io
-0.5-
_1_'
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Presenter Notes
Presentation Notes
Another example.   Use slide show to see animation.
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