PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Lecture 21 — Chap. 7 (F&W)

Ordinary and partial differential equations

1. The wave equation — traveling wave solutions
2. The wave equation — standing wave solutions

3. The Sturm-Liouville equation

10/11/2024 PHY 711 Fall 2024 -- Lecture 21 1


Presenter Notes
Presentation Notes
In this lecture, we follow the textbook to use the example of the one-dimensional wave equation to discuss ordinary differential equations more generally and develop some solution methods.


11 Wed, 9/18/2024 |Chap. 5 Dynamics of rigid bodies #10
12 |Fri, 9/20/2024  |Chap. 5 Dynamics of rigid bodies #11
13 [Mon, 9/23/2024 |Chap. 1 Scattering analysis #12
14 Wed, 9/25/2024 |Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024  |Chap. 1 Scattering analysis #14
16 Mon, 9/30/2024 |Chap. 4 Small oscillations near equilibrium
17 \Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-9/24
18 [Fri, 10/4/2024  |Chap. 4 Normal mode analysis THE-10/3-9/24
19 Mon, 10/7/2024 |Chap. 4 Normal mode analysis in multiple dimensions | THE-10/3-9/24
20 Wed, 10/9/2024 |Chap. 4&7 |Normal modes of continuous strings THE-10/3-9/24
21 |Fri, 10/11/2024 |Chap. 7 The wave and other partial differential equations
22|Mon, 10/14/2024 |Chap. 7  |Sturm-Liouville equations |
23 Wed, 10/16/2024 |Chap. 7 Sturm-Liouville equations
Fri, 10/18/2024 |Fall Break
24 Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions
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Presenter Notes
Presentation Notes
Expected schedule for the next weeks…


One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

Traveling wave solutions thanks to D’Alembert --

For the displacement function, u(x,?), the wave equation has the form:

2 2

g 'g —c’ g ’Lzl =0
ot Ox

Note that for any function f(g) or g(q) :
ux,t) = f(x—ct)+ g(x+ct)

satisfies the wave equation.



Presenter Notes
Presentation Notes
Review of wave equation.


Initial value traveling wave solutions u(x,?) to the wave equation;

attributed to D'Alembert: These functions

lWOUId be given

where u(x,0) = ¢(x) and %(x, O)\zw(x)

2 2
g ’f —c’ g ’l; 0
ot Ox
Assume:
ux,t) = f(x—ct)+g(x+ct)
then: u(x,0)=p(x) = f(x)+g(x)

o, o (dft)dgl)
S50) =y (x) = c[ " dxj

= £~ g(0) = [y

10/11/2024 PHY 711 Fall 2024 -- Lecture 21 4


Presenter Notes
Presentation Notes
This method by D’Alembert is based on the special property of the wave equation.


Solution - - continued : ux,t)=f(x—ct)+g(x+ct)

then: u(x0)=¢(x)=f(x)+g(x)

% 00) = () = L0 )

= f(0)-g(x) = j p (x')dx

For each x, find f(x)and g(x):

()= %[qﬁ(x) —%fw(x')dx']
200 =1 900+ [y ()
2 C

= u(x,t) = %(¢(x —ct)+¢(x+ ct))+ 2%} jw(x')dx'


Presenter Notes
Presentation Notes
D’Alembert’s method continued.


Checking that D'Alembert's solution solves the wave equation:

2 2
0’ 1 2 » 0" _0
ot’ Ox”
1 1 x+ct
u(x,t) = (gp(x ct)+(p(x+ct))+2— j y(x)dx'
WD - (g —ct) + @' r+c0) 45— (r—c) +y(x+en)
2
T _ Lo cty+ 9"+ ct)) + ——(p (e —ct) + (5 + )
8)(? 2 2c
LD _ C(p(xmer) + g (x+e)) 4y ct) + y (x-+)
2 2 ’
: i’;ﬁf’t) = CZ ((/)"(x—ct)+¢"(x+ct))+§_c(%”'(x—ct)+W'(X+Cf))
Here we have assumed that ¢(uz) and w(u) are continuous functions and
do(u d”p(u
=LY, =2, e

du



Example:

=0.
2.
2
) 2

-4 -2 (
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An example.    (Use slide show to see animation.)


%Xample ;

2
aél 2 T4 =0 where u(x,0)=0 and a'u(xO)—_ﬁe—xz/az
Ot Ox2 =
o ey = (et o)
2c
Note that >y — _LZ((X-F ct)e—(x+cz)2 LA (x ct) (et} /az)
ot o
t=0.
1-
0.5
_iﬁl — !5 ] a T é I N io
-0.5-
_1_'
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Presenter Notes
Presentation Notes
Another example.   Use slide show to see animation.


Other types of solutions to the wave equation:

2 2
OU_ 20H_

ot* Ox”

Note that because of the way that the equation 1s written,

it 1s possible to find "separable" solutions of the form

p(x,1) = X(x)I'(2)
or more generally, a linear combination of separable solutions:

u(x,0) =Y X, (0T, (1)



Separable solutions to the wave equation:

O'u L0
—c
ot> O’
1 d°X(x) 1 d°T@)
X(x) dx’ c’T(t) dt’

For example, suppose the time function 1s harmonic in time with

=0 for  pu(x,t) = X(x)T(t)

frequency w: T(t)=cos(wt+n)
Then the spacial function must statisfy the ordinary differential equation:

d* X (x @’
M X ()
dx C

= X(x)=Asin(kx+v) where k = @
%



It is often the case, there are boundary values specified for
X(x).

X(x)=Asin(kx+v) where k=—

For example, suppose X(0) =0and X(a)=0 —— assume v=0

Asm(kx)| =0 Asin(kx)| =0
jk:@ forn=0,1,2,.....
a
:X(x):Asin(@j and @ = ke = 2€
a a



niwx nict

Standing wave --  1(x,t) = Asin| —— |COS
A A

10/11/2024 PHY 711 Fall 2024 -- Lecture 21 12



How are the traveling wave and standing wave solutions to
the wave equations related?

A. They are exactly the same

B. They are not related
C. 777

More general solution with boundaries at x=0,a :

u(x,0) =Y X, (T,() =Y 4, sin (@j cos(mwt + anj

A A




B
The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2 2
af—czaé’zo Whereczzi
ot Ox o

Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

2
o) TAED 2 o) D syt =0
Factoring time and spatial variables:

u(x,t)=¢(x) cos(wt + )
Sturm-Liouville equation for spatial function @(x):

_ d_(fm v (x)j FY(0)P() = O’ ()P(x)
X dx



Presenter Notes
Presentation Notes
Generalization of the wave equation.   Equations in this class are separable in the time variables and the spatial variable satisfies  a generalized eigenvalue problem of this form.


Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Presenter Notes
Presentation Notes
We will sometimes want to generalize even further with an “inhomogeneous” term such as an applied force.


Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x)— Aa(x)) p(x)=0

dx X

Bessel functions: 0<x <

T(x)=—x v(ix)=x o(x)= 1 A=v: p(x)=J,(x)
X

Legendre functions: —-1<x<1
T(x)z—(l—xz) v(x)=0 o(x)=1 A=I(l+1) ¢@(x)=PB(x)
Fourier functions: 0<x<1

r(x)=1 v(x)=0 o(x)=1 A=n'm" @(x)=sin(nrx)


Presenter Notes
Presentation Notes
For now, we will focus on eigenvalues of the homogeneous equations.


Solution methods of Sturm-Liouville equations
(assume all functions a(wd gonstagts are real):

Homogenous problem: | ——7(x)—+v(x)— /Ia(x)j% (x)=0
dx dx

Inhomogenous problem : (— 4 7(x) 4 +v(x)— /Ia(x)j¢(x) = F(x)
dx dx

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0_N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

J(X)Z ﬁa(x])vﬁq(x') _ 5(x—x')

n



Presenter Notes
Presentation Notes
The eigenfunctions of these equations have very useful properties such as completeness.


Why all of the fuss about eigenvalues and eigenvectors?

d.

b.
C.

They are sometimes useful in finding solutions to
differential equations

Not all eigenfunctions have analytic forms.

It is possible to solve a differential equation without
the use of eigenfunctions.

. Eigenfunctions have some useful properties.



®
Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(X)%w(X)jﬂ(X)—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j=(zn = 3,) o) £,(0) £, ()


Presenter Notes
Presentation Notes
Orthogonality of eigenfunctions.


®
Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn (x)fm (X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (%)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

4+

Vanishes for various boundary conditions
at x=a and x=b
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Presenter Notes
Presentation Notes
Orthogonality continued.


Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1


Presenter Notes
Presentation Notes
Orthogonality continued.


~ Comment on “‘completeness”

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f (x)

h(x)= > C,f.(x),

where C :N% [ o (em £, ('

These ideas lead to the notion that the set of
eigenfunctions 7 (x) form a "~ "complete"” set in the sense
of ““spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o(x)y /» (xj)vﬂ () _ s(x—x).

n



Presenter Notes
Presentation Notes
Notion of completeness.


~ Comment on “completeness” -- continued
Suppose that: A(x) = ch f, (x),

where C = NL [ o) f, ('

Consider the squared error of the expansion:

— j dxc(x)(h(x) -Yc, fn(x)j

e” can be minimized:

Oe’ f

eain 0=-2 j dxa(x)[h(x) - Zn:Cnfn(x)]fm (x)

m

= C = Nim j dxo (x)h(x) [ (x)


Presenter Notes
Presentation Notes
Notion of completeness and practical applications.      Next time, we will extend this idea of completeness to develop important relationships.


~ Comment on “‘completeness”
Note that we have “proven” that

G(x)zf L) 50,y

which follows from the identities

h(x) = ZCnfn(x),Where C = Fj: o(xYa(x")f (x"dx'.

= h(x) = ZLNL

n

[ o (eh(a £, (xdx ']fn (x)
From the definition of the Dirac delta function:
For a<x<bh: h(x)= Lb5(x — xX)h(x")dx'

= S(r—x)=o(x) Y L (x])vﬂ )

n



Presenter Notes
Presentation Notes
Notion of completeness and practical applications.      Next time, we will extend this idea of completeness to develop important relationships.


Eigenvalues and eigenfunctions of Sturm-Liouville equations
Inthe domain a<x<b:

(—irmi + v(x)jfnm = 4 o(x)f,(x)

dx dx
Alternative boundary conditions; 1. f, (a)= f, (b)=0
or 2. 7(x) (%) =7(X) 4 (%) =0
dx |, dx |,

or3. f (a)= . (b) and df,,(a) _df,(b)
Properties: dx dx

Figenvalues A are real

nm n?

Eigenfunctions are orthogonal: I b o(x)f (x)f (x)dx=06 N

where N, = [ o(x)(f, (x) dx.


Presenter Notes
Presentation Notes
General properties.


“Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the “exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

~S ~/

function ZO ) <%Zv AY ltlv> | S(x) = _%r(x)a+\/(x)
<h o h>

where #(x) is a variable function which satisfies the
correct boundary values. The ""proof" of this inequality is
based on the notion that#(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.


Presenter Notes
Presentation Notes
Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.


Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S()h(x) = 8(x)).C,f,(x) =D C,A,0(x)f,(x).
It follows that: ! !

(|S|i) = [ h(0)S()h(x)dx =Y C, P N,A,
It also follows that: ’

(h|o|i)= jj}?(x)a(x)ii(x)dx =Y, P N,

|37 dIC,[PN,4,

n

— = > A.
Wolh)  2ICEN, 7

n

Therefore g


Presenter Notes
Presentation Notes
Proof of the  Rayleigh-Ritz theorem.


Some additional comments -- <h|S|h>

h|S|h
< > :Zf/l wheref—zw‘;v andz =1

(ol
For the case of only two non-trivial eigenvalues:
(h|s|h)

~ :ﬁ)ﬂ,0+ﬁﬂl:/10+(ﬂ1—ﬁo)ﬂ
(hlo]h)

(is|)

el ]‘_, f

0 1
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Rayleigh-Ritz method of estimating the lowest eigenvalue
(h|S h?
A <AL
(hlo]h)
d2
Example: 3 f,(x)=Af (x) withf (0)=/f (a)=0
X
Exact eigenfunctions: /. (x)=sin (n_ﬂxj n=123....
a
2 2
Exact eigenvalues: A = (ﬂj n=1273.... 722 = 9'8696? 4404
a a a

Trial function  f;, (%) = x(x —a)

d
Raleigh-Ritz estimate: <X(a X)‘ dxz‘X(a X)>:10

<X(CZ—X)‘X(CZ—X)> Cl2



Presenter Notes
Presentation Notes
Review of example from last lecture.


0.8 f, exact
F 0.6

04 ftrial

0.2

02 04 06 08 1
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.

Rayleigh-Ritz method of estimating the lowest eigenvalue

1< <h 5 h> Another example — this time
0~ </’1' o j;>’ with a variable parameter
o df,(x :
Example: ;( )+Gx f(x)=A4 f,(x) withf (—0)= f (0)=0
X
trial function f__ (x)=e®
S| f..
Raleigh-Ritz estimate: <fmal fmal> =g+ G i (€)
1.4 <f';rial o f';rial> 4g
/ltrial (g) d
1.2-
/ G ,
1.1-
1.0 ‘ — — —
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator:
gOZEVG ;]“trial(go):VG G_mo 2mE Lz _ho
h 2

trial ? 0
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Presenter Notes
Presentation Notes
Another example.


Qeoap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

D L (=B f () withf (o) = f,(0) =0

2m  dx’ 2
Trial function £ (x) = e s
S| £ 2 2 2 /32
Raleigh-Ritz estimate: <fmal |fmal> = f g+ mo I =E;(8)
< trial G|f‘;rial> 2m 4g
1
g, :%w Eu(80) =2 he @ Exact answer

Do you think that there is a reason for getting the correct
answer from this method?

a. Chance only

b. Skill


Presenter Notes
Presentation Notes
In this case, the minimization process yield’s the exact answer.
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