PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 22 — Chap. 7 (F&W)

Sturm-Liouville equations

1. Eigenvalues and eigenfunctions }
review
2. Rayleigh-Ritz approximation method

3. Green’s function solution methods based on
eigenfunction expansions

4. Green’s function solution methods based on

solutions of the homogeneous equations
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of one dimensional ordinary differential equations.
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Mon, 9/23/2024

||
=
N

Chap. 1 Scattering analysis #12
14 \Wed, 9/25/2024 |Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024 Chap. 1 Scattering analysis #14
16 Mon, 9/30/2024 |Chap. 4 Small oscillations near equilibrium
17 |Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-9/24
18 |Fri, 10/4/2024 Chap. 4 Normal mode analysis THE-10/3-9/24
19 Mon, 10/7/2024 |Chap. 4 Normal mode analysis in multiple dimensions  |[THE-10/3-9/24
20 \Wed, 10/9/2024 |Chap. 4&7 |Normal modes of continuous strings THE-10/3-9/24
21 |Fri, 10/11/2024 |Chap. 7 The wave and other partial differential equations
22 Mon, 10/14/2024 |Chap. 7 Sturm-Liouville equations #15
23 Wed, 10/16/2024 |Chap. 7 Sturm-Liouville equations #16
Fri, 10/18/2024 |Fall Break
24 Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions
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Presenter Notes
Presentation Notes
The schedule continues to cover material in Chap. 7


PHY 711 — Assignment #16
Assigned: 10/14/2024  Due: 10/23/2024
Continue reading Chapter 7 in Fetter and Walecka.

1. Consider the differential eigenvalue problem

d? . '
_Efn(l) = Anfn(T),
with boundary values f,(zx =0) =0 = f,(z = a).

(a) Find the first few eigenvalues \,, and eigenfunctions f,,(x).
(b) Consider a trial function
friar(x) = 2(a® — 27)

to estimate the lowest eigenvalue of this system using the Rayleigh-Ritz method. How
well does it do?

10/14/2024 PHY 711 Fall 2024-- Lecture 22 3



PHY 711 -- Assignment #16

Assigned: 10/14/2024 Due: 10/23/2024

Continue reading Chapter 7 in Fetter & Walecka.

1. Consider the function f(x) = x (1-x?) in the interval 0 < x < 1. Find the coefficients Ap of the Fourier series
based on the terms sin( n  X). Extra credit: Plot f(x) and the Fourier series including 3 terms for example.
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Review — Sturm-Liouville equations defined over a range of x.

Homogenous problem: (—i 7(X) 4 +v(x) - /Ia(x)j 0,(x)=0
dx dx
d d
Inhomogenous problem: (—d— 7(X) o +v(x) — /Ia(x)j o(x)=F(x)
X X

Eigenfunctions:

(‘difmi + v<x>)fn<x> = /,0(0),(x)
X dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.


Presenter Notes
Presentation Notes
Review of the class problems considered.


Eigenvalues and eigenfunctions of Sturm-Liouville equations
Inthe domain a<x<b:

(—irmi + v(x)jfnm = 4 o(x)f,(x)

dx dx
Alternative boundary conditions; 1. f, (a)= f, (b)=0
or 2. 7(x) (%) =7(X) 4 (%) =0
dx |, dx |,

or3. f (a)= . (b) and df,,(a) _df,(b)
Properties: dx dx

Figenvalues A are real

nm n?

Eigenfunctions are orthogonal: I b o(x)f (x)f (x)dx=06 N

where N, = [ o(x)(f, (x) dx.


Presenter Notes
Presentation Notes
General properties.


Formal statement of completeness of eigenfunctions:

Completeness of eigenfunctions:

J(X)Z fn(x])\[fn(x') _ 5(x—x')

n




“Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the “exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

~S ~/

function ZO ) <%Zv AY ltlv> | S(x) = _%r(x)a+\/(x)
<h o h>

where #(x) is a variable function which satisfies the
correct boundary values. The ""proof" of this inequality is
based on the notion that#(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.


Presenter Notes
Presentation Notes
Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.


Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S()h(x) = 8(x)).C,f,(x) =D C,A,0(x)f,(x).
It follows that: ! !

(|S|i) = [ h(0)S()h(x)dx =Y C, P N,A,
It also follows that: ’

(h|o|i)= jj}?(x)a(x)ii(x)dx =Y, P N,

|37 dIC,[PN,4,

n

— = > A.
Wolh)  2ICEN, 7

n

Therefore g


Presenter Notes
Presentation Notes
Proof of the  Rayleigh-Ritz theorem.


Some additional comments -- <h|S|h>

h|S|h
< > :Zf/l wheref—zw‘;v andz =1

(ol
For the case of only two non-trivial eigenvalues:
(h|s|h)

~ :ﬁ)ﬂ,0+ﬁﬂl:/10+(ﬂ1—ﬁo)ﬂ
(hlo]h)

(is|)

el ]‘_, f

0 1
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Rayleigh-Ritz method of estimating the lowest eigenvalue
(h|S h?
A <AL
(hlo]h)
d2
Example: 3 f,(x)=Af (x) withf (0)=/f (a)=0
X
Exact eigenfunctions: /. (x)=sin (n_ﬂxj n=123....
a
2 2
Exact eigenvalues: A = (ﬂj n=1273.... 722 = 9'8696? 4404
a a a

Trial function  f;, (%) = x(x —a)

d
Raleigh-Ritz estimate: <X(a X)‘ dxz‘X(a X)>:10

<X(CZ—X)‘X(CZ—X)> Cl2



Presenter Notes
Presentation Notes
Review of example from last lecture.
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Rayleigh-Ritz method of estimating the lowest eigenvalue

1< <h 5 h> Another example — this time
0~ </’1' o j;>’ with a variable parameter
o df,(x :
Example: ;( )+Gx f(x)=A4 f,(x) withf (—0)= f (0)=0
X
trial function f__ (x)=e®
S| f..
Raleigh-Ritz estimate: <fmal fmal> =g+ G i (€)
1.4 <f';rial o f';rial> 4g
/ltrial (g) d
1.2-
/ G ,
1.1-
1.0 ‘ — — —
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator:
gOZEVG ;]“trial(go):VG G_mo 2mE Lz _ho
h 2

trial ? 0
10/14/2024 PHY 711 Fall 2024-- Lecture 22 13


Presenter Notes
Presentation Notes
Another example.


Qeoap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

D L (=B f () withf (o) = f,(0) =0

2m  dx’ 2
Trial function £ (x) = e s
S| £ 2 2 2 /32
Raleigh-Ritz estimate: <fmal |fmal> = f g+ mo I =E;(8)
< trial G|f‘;rial> 2m 4g
1
g, :%w Eu(80) =2 he @ Exact answer

Do you think that there is a reason for getting the correct
answer from this method?

a. Chance only

b. Skill


Presenter Notes
Presentation Notes
In this case, the minimization process yield’s the exact answer.


The Green of Green Functions ©

In 1828, an English miller from Nottingham published a mathematical essay that generated little response. George

Green’s analysis, however, has since found applications in areas ranging from classical electrostatics to modern quantum

The Green of Green Functions

field theory.

Lawrie Challis
M) Check for updates

Physics Today 56 (12), 41-46 (2003);
https://doi.org/10.1063/1.1650227

10/14/2024

In 1828, an English miller from Nottingham published a
mathematical essay that generated little response. George
Green’s analysis, however, has since found applications in
areas ranging from classical electrostatics to modern

quantum field theory.

Lawrie Challis and Fred Sheard

ottingham, an attractive and thriving town in the Eng-

lish Midlands, is famous for its association with Robin
Hood, whose statue stands in the shadow of the castle wall.
The Sheriff of Nottingham still has a special role in the
city government although happily no longer strikes terror
into the hearts of the good citizens.

Recently a new attraction, a windmill, has appeared
on the Nottingham skyline (see figure 1). The sails turn on
windy days and the adjoining mill shop sells packets of
stone ground flour but also, more surprisingly, tracts on
mathematical physics. The connection between the flour
and the physics is part of the mill’'s unique character and
is explained by a plaque once attached to the side of the
mill tower that said,

HERE LIVED AND LABOURED
GEORGE GREEN
MATHEMATICIAN
B.1793-D.1841.

That is the Green of Green’s theorem, which is familiar to
physics undergraduate students worldwide, and of the
Green functions that are used in many branches of both
classical and quantum physics.

PHY 711 Fall 2024-- Lecture 22

his family built a house next to the
mill, Green spent most of his days and
many of his nights working and indeed
living in the mill. When he was 31,
Jane Smith bore him a daughter. They
had seven children in all but never
married. It was said that Green’s fa-
ther felt that Jane was not a suitable
wife for the son of a prosperous trades-
man and landowner and threatened to
disinherit him.

Little is known about Green’s life from 1802 until
1823. In particular, it is not known whether he received
any help in his mathematical development or if he was en-
tirely self-taught. He may have received help from John
Toplis, a fellow of Queens’ College in the University of
Cambridge and headmaster of the Nottingham Grammar
School. Toplis’s translation of Pierre-Simon Laplace’s book
Meécanique Céleste, published in Nottingham in 1814,
seems a likely source of Green’s interest in potential the-
ory. The work was unusual in Britain at that time inas-
much as Toplis used Gottfried Leibniz’s more convenient
notation for differentials rather than Isaac Newton’s. Be-
cause Green adapted the Leibniz notation, it seems plau-
sible that Green was influenced by Toplis, but there is no
evidence that Toplis acted in any way as his tutor.

In 1823, Green joined the Nottingham Subscription
Library, the center of intellectual activity in the town. The
library was situated in Bromley House (see figure 2). Li-
brary membership provided Green with encouragement,
support, and access to the Philosophical Transactions of
the Royal Society and other scientific journals. These did
not include overseas journals, but the Transactions listed
the contents of those journals, and that would have al-
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Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:

(_im)_w(x) ﬂa(x)jeo(x) F(x)

dx dx
Green's function :

(—ir(x)—ﬂ(x} za(x)jG (x.x') = 5(x—x)

dx dx

Formal solution:

@, (x) = (010(\36) T .[Gﬁ (x,x")F(x")dx'

Solution to homogeneous problem


Presenter Notes
Presentation Notes
From a knowledge of the Green’s function we can find solutions of related inhomogeneous equations.


Formal solution:

0, (%) = 0,0 (X)+ | G, (x,x)F (x)dx’

Solution to homogeneous problem

What is the homogeneous equation psi_0(x)?

Homogenous problem:

(—iT(X)di +v(x) —/10(36))%0(36) =0

dx X

In this lecture, we will discuss several methods of
finding this Green’s function. This topic will also
appear in PHY 712



How do we arrive at the formal solution?

Formal solution:

0, (X) = 0,0 (X)+ [ G, (xr, x)F (x)dx’

Note that this form satisfies the inhomogenous equation

Define S(x)= _4 7(x) di +v(x)— Ao (x)

X X

()@, (X) = S(X),(x) + S(x) [ G(x, x)F (x')dx’

S(xX)p,(x) = 0 +J O(x—x"Y(x"dx'=F(x)



®
Using complete set of eigenfunctions to form Green'’s function --

Suppose that we can find a Green's function defined as follows:

(_L(x)—w(x) za(x)jG (6,2 =5 (x—x)

dx dx

Completeness of eigenfunctions:

Zf(x)f(x) 5(x x)

n

In terms of elgenfunctlons

(_if(x)_-FV(X) ﬂ,O'(x)jG (X X) (7 )Zﬁ’(xj)vfn(x')

Recall:

dx dx

n

=G, (x,x") = Z ﬁ?(x)f(_x; / N, By construction

10/14/2024 PHY 711 Fall 2024-- Lecture 22 19



Presenter Notes
Presentation Notes
The following slides present solution methods for differential equations involving the use of eigenvalues.


.

Example Sturm-Liouville problem:

Example: t(x)=1 ox)=1, v(x)=0;
A=1; F(x):FOsin(%j

Inhomogenous equation:

d’ [ 7mx
(_E — 1] ¢(x) = F,sin (Tj

10/14/2024 PHY 711 Fall 2024-- Lecture 22

a=0 and b=L

20


Presenter Notes
Presentation Notes
Example.


Eigenvalue equation :

(— j—jf (1) = A, f,(x)
X

Eigenfunctions Eigenvalues:

£(x) = %sin(%j j, = (T”j

Completeness of eigenfunctions:

o () T 6 (x-x)

n

: 2 . . !
In this example: — E sin| 222 sm(mm j:
L5 L L


Presenter Notes
Presentation Notes
Solution using eigenfunctions appropriate for this example.


: . . 2. . !
In reality, for finite summation ZZ sin (nTﬂxJ sin ( nrx j =0 ( X—X ')
n=1

L
x=1/2, L=1
100- |
80-
| N=100
60- o
40-
20
- : N=10
() rosane %*wwwu’ﬂwur - UU > wﬂ“ﬂuﬂwﬂ APt
- 0.2 0. \ ] 0.8 1
_20_ xp X’9
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Green's function :

(— a 7(x) a +v(x) — /la(x)le (x,x') = 5(x — x')
dx dx

Green's function for the example:

' sin(mj sin(nﬂx'
) = S LAY, 29\ L) AL
n no n (MJ _1


Presenter Notes
Presentation Notes
Continued.


.

Using Green's function to solve inhomogenous equation:

2
(_Z_ — lj @(x) = F,sin ( ij with boundary values ¢(0)=¢(L)=0
X

o(x) = ¢O(x)+jG(x X, sm(ﬂLx jdx'

nixx
sin(j / ' '
o) =0y (1) + 25 = [sin (ﬂ}ﬁ‘o sin (ﬂj dx’

HOE

L

P(x) = Py () + —2 sin(ﬂj


Presenter Notes
Presentation Notes
In this case, the solution simplifies.


Another method of constructing Green'’s functions -- using
two solutions to the homogeneous problem

Green's function :
d d
——7(x)—+v(x)—Ao(x) |G, (x,x") = 5(x — x')
dx dx
Two homogeneous solutions

(_iz-(x)di+v(x)—/la(x)jgi(x):O for i=a,b

dx X
1

Let Gg(xax')zwga('x<)gb(x>)
d d

where Wsr(x')(ga(x')d 'gb(x')—gb(x')—,ga(x')j
X dx


Presenter Notes
Presentation Notes
Green’s function based on homogeneous solutions (not eigenfuntions).


@ome details:
For ¢ > 0:

X +€ x'+e

jdx(—d—f(x)—+v(x) la(x)jG (x,x") = jdx& X— x)

j dx(——r(x)—j;Vga (x.)g,(x.) =1

dx dx

Tﬁg)( g.(x.)g, (x. >ﬂ - T(V;')(gﬁx')%gb(x')—gb<x'>%ga<x'>j

=W = r(x')(ga(x')%gb(x')_gb(x')%ga (x')j dw

Note -- W (Wronskian) 1s constant, since = 0.

'

dx
— Useful Green's function construction in one dimension:

1

Gxi(xﬂx') — Wga(x<)gb(x>)


Presenter Notes
Presentation Notes
Some details.     


dx dx

(—ir(x)—JrV(X) za(x)j P(x) = F(x)

Green's function solution:

0, (X) = 0,0 (0) + | G, (x, x)F (x)dx’

() + £ jg (O (' £ [P

Note that the integral has to be performed in two parts.
While the eigenfunction expansion method can be
generalized to 2 and 3 dimensions, this method only works

for one dimension.


Presenter Notes
Presentation Notes
More details.      


Example from previous discussion:

d’ TX
-——1|p(x)=F sm( 7 j with boundary values @(0)=¢(L)=0

Using: G(x,x')z%ga()@)gb()g) for  0<x<L

(_5_22 - ljgi (x)=0 = g,(x)=sin(x); g, (x)=sin(L-x);
dg,(x) . .. . B
(x)—=—==sin(L —x)cos(x)+sin(x)cos(L —x)

dx

a

W:gb(x)@;—i)c)—g

=sin(L)

P(x) = @y(x) + Sin.(L - x) Isin(X')Fo sin (ﬂj dx'
sin( L L

sm(x)
sin(L) <

Iy sin(ﬂj (Actually the algebra is painful).

_|_

Ism(L x")VF, sm( 7 jdx

= +
P(x) = o(x) )2 | L But, hurray! Same result as before.
- _


Presenter Notes
Presentation Notes
Another method of finding a Green’s function.


Another example --

2
j_cp( x)=—p(x)/¢€ electrostatic potential for charge density p(x)
X

Homogeneous equation:

d2
d 2 gab('x) 0

Letg,()=x  g,(x)=]
Wronskian:

W =g, () e

QGreen's function:
G(x,x")=—x_

a’ga ) _

- g,(x)

O(x) = cp(x)+—jdx'x'p(x)+ jdx o(x)

€ %
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Presenter Notes
Presentation Notes
Another example, this time taken from electrostatics.


Example -- continued

d’ : : :
Ecp( x)=—p(x)/ €, electrostatic potential for charge density p(x)

cb(x)cho(x)+1jdx'x'p(x')+ijdx'p(x')
60 —00 60 X

(0 x<—a
Suppose p(x)=3p,x/a —-a<x<a
0 xX2>a
0 x<—a

o, [a xa* x
DO(x) =D, (x)++ 0( + — j —a<x<a

€a\ 3 2 6

2

— 0,4 xX2a
| 3¢,
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Presenter Notes
Presentation Notes
Solutions for a particular charge distribution.


D(x) =+

0 x<—a
po(cf X —X3j —a<x<a
€al\ 3 2 6
2
gpoa xX2a

2_

10/14/2024

_1_
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Presenter Notes
Presentation Notes
Plot of the change distribution and of the electrostatic potential.
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