PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 23: Chap. 7
& App. A-D (F&W)

Generalization of the one dimensional wave equation =

various mathematical problems and techniques including:
1. Completeness property of Sturm-Liouville

eigenfunctions

Construction of Green’s functions

Fourier transforms

. Laplace transforms

Complex variables

Contour integrals
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Presenter Notes
Presentation Notes
In this lecture we will start to cover various useful mathematical techniques.
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Mon, 9/23/2024 |Chap. 1 Scattering analysis #12
14 \Wed, 9/25/2024 |Chap. 1 Scattering analysis #13
15 |Fri, 9/27/2024 Chap. 1 Scattering analysis #14
16 Mon, 9/30/2024 |Chap. 4 Small oscillations near equilibrium
17 |Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-9/24
18 |Fri, 10/4/2024 Chap. 4 Normal mode analysis THE-10/3-9/24
19 Mon, 10/7/2024 |Chap. 4 Normal mode analysis in multiple dimensions  |[THE-10/3-9/24
20 \Wed, 10/9/2024 |Chap. 4&7 |Normal modes of continuous strings THE-10/3-9/24
21 |Fri, 10/11/2024 |Chap. 7 The wave and other partial differential equations
22 Mon, 10/14/2024 |Chap. 7 Sturm-Liouville equations #15
23 Wed, 10/16/2024 |Chap. 7 Sturm-Liouville equations #16

Fri, 10/18/2024 |Fall Break
24 Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions
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PHY 711 — Assignment #16
Assigned: 10/14/2024  Due: 10/23/2024
Continue reading Chapter 7 in Fetter and Walecka.

1. Consider the differential eigenvalue problem

d? . '
_Efn(l) = Anfn(T),
with boundary values f,(zx =0) =0 = f,(z = a).

(a) Find the first few eigenvalues \,, and eigenfunctions f,,(x).
(b) Consider a trial function
friar(x) = 2(a® — 27)

to estimate the lowest eigenvalue of this system using the Rayleigh-Ritz method. How
well does it do?
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PHY 711 -- Assignment #16

Assigned: 10/14/2024 Due: 10/23/2024

Continue reading Chapter 7 in Fetter & Walecka.

1. Consider the function f(x) = x (1-x?) in the interval 0 < x < 1. Find the coefficients Ap of the Fourier series
based on the terms sin( n  X). Extra credit: Plot f(x) and the Fourier series including 3 terms for example.
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Review — Sturm-Liouville equations defined over a range of x.

For x <x<x,

Homogenous problem: (—i 7(X) di +v(x) - /Ia(x)j @,(x)=0
X X
d d
Inhomogenous problem: —d—r(x)d— +v(x)—Ao(x) |o(x)=F(x)
X X

Eigenfunctions:
(‘%m%wxﬂm)=zna<x>fn<x>

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.


Presenter Notes
Presentation Notes
Review of the Sturm Liouville equations.


@Formal statement of the completeness of eigenfunctions:

G(x)zﬁ’(x])vﬁ“ () = 5(x—x') where N = Ta’xJ(x)(fn(x))2

n

This means that within the interval x, <x<x,,

an arbitrary function 4(x) can be expanded: A(x) = Z C 1 (x).

Some details:  Note that:

o) f,(0)f, (x)dx =N, 35,

b 2
Now consider K ({Cn }) = _[ o(x) dx

h(x)—ZCnfn(ao



Presenter Notes
Presentation Notes
Specializing to the simplest case.


Some details: Note that:

?a(x)fn (), ()dx=N,3,,

5 2
Now consider K ({Cn }) = ja(x) dx

h(x) —ZCnfn(X)

Choosing the optimal {C, } which minimize K ({C, }):

oK ({C,})

oC
Formal completeness statement:

G(X)an(x])\]fn(x) _ 5(x—x')

n

=0 =C = Nim j o (x)h(x) [, (x)dx

j‘dx h(x)a(x)Z f’”l(x])vﬂ (x) = j'a’x h(x)ﬁ(x—x')

n



Formal completeness statement:

Zf(x)f ) _ g

X)C)

jdx h(x)a(x)z ﬁ’(xj)vﬂ (x) = jdx h(x)5(x—x

’ 4

Zn: (NL,/, j‘: dxh(x)o(x)f, (x)]fn (x") = h(x")
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Example Sturm-Liouville system --

Example for 7(x) =1=0o(x) and v(x) =0 with
O0<x<Land f(0)=0=/f (L)

d’f,(x)

=A f(x
T oS

(—dirmi + v(x)jfnm — Ao f(x) = -
X dx

In this case, the normalized eigenfunctions are

2 NTx ni ’
— |Z4in| =/—= A = — n=12,....
J,(x) 7 ( 7 j . ( j



Comment about normalized eigenfunctions:

nwx

f ()C) — SiIl (Tj n = 1,2, .....

Check: jdx (1)) :—jdx(sin(n:x)j :%Idx%(l—cos(
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Joseph Fourier

Jean-Baptiste Joseph Fourier

Born 21 March 1768

Auxerre, Burgundy, Kingdom
of France (now in Yonne,
France)

Died 16 May 1830 (aged 62)
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Special case: 7(x)=1=0(x) v(x)=0

dzf(x) Af(x) for 0 <x<a, withf (0)=f (a)=0

£.(x0) = | sin (@j A, = (ﬂj
a a a

Fourier series representation of function 4(x) in the interval 0<x<a:

h(x) = ZA \Psm(”’”j
a
\/7_“dx h(x") sm(nﬂxj

*Note that 1f /2(x) does not vanish at x = 0 and x = a, the more general

: : s o o >
expression applies: h(x) = Z A \/: Sm(”lﬂx j N Z B \/: cos(mmj
n=1 a a =0 a a

(with some restrictions).




Example

h(x) = sinh(x) =27 sinh(l)(smyz X) _2sin(27x)

+1 4r’+1

‘*-—(—IVnShmnﬂx)+“)

n'rt+1
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Example

h(x)=x(1-x)

=ZAn \/Esin(mrx) A =
n=1

for n odd

0 for n even

n=1.3

10/16/2024
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Fourier series representation of function 4(x) in the interval 0<x<a:

h(x) = ZA \Psin(”zxj with A4 :\/%Idx' h(x") sin(m;x'j

Can show that the series converges provided that 4(x) 1s

piecewise continuous.

Note that this analysis can also apply to time dependent
functions. In the remainder of the lecture, we will consider
time dependent functions.

Xt a—>T 0 <tr<T — > —=w

h(t) = g/ln\/%sin(a)nt) A = \/%J:dt' h(t'") sin(ew,t')

Note that for this finite time range, Fourier series is

discrete in frequency and continuous in time.
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Comment on complex functions —

We can also treat complex functions, typically separately
considering the real and imaginary parts.



Generalization to infinite range -- Fourier transforms
A useful identity

ja’t o= ) =278 (0 - ®,)

Note that
L . 21 — T
J-dt g ) = sinf (- )7 | ~ 276 (0 — w,)
T w — a)() T —oo
- F @, =1

30+

20- =20
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Definition of Fourier Transform for a function f(¢):

() = Ta’a) F(w)e™

Backward transform :

Fla)=>— j dtfi1)

Check :

f@)= Tda) [i Tdt' ft') e"a’f'jeia»
f(f)ZTdt'f(t ( Idme ttj _‘.a’tf(t)ﬁ(t 5

Note: The location of the 2r factor varies among texts.



Question about forward and backward transforms —

Comment — Nomenclature for forward and backward
can be confusing, but the point is that if we know the
time dependence, we can determine the frequency
dependence and if we know the frequency dependence,
we can determine the time dependence.



Properties of Fourier transforms -- Parseval's theorem:

zdf(f(t))* 1 =2nzdw (F(@)) F(w)

Check: Idt OWIE j dt[[ | doF (o } [ do'F(a)e J
=Tda)F jda)F jdze“’>
- [ doF (o) | do'F () 2750 - o)
=27 ojo doF ()F (o)

Note that for an infinite time range, the Fourier transform

is continuous in both time and frequency.
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Use of Fourier transforms to solve wave equation

o'u  ,0u B

Wave equationi ——-c"—=0
1 ot ox’
Suppose  u(x,t)=e " F(x,w) where F(x,w) satisfies the equation:
OrF 2 5 More generally:
(’;’ ) _ 2 Fx,0) =- EF(x,0) e
Ox ¢ u(x.t) = [ doF (x.w)k ™
T —00

Further assume that fixed boundary conditions apply: 0<x < L
with F(0,0)=0 and F(L,w)=0
Forn=12,3---

F (x,0) = sin(@j k—>k = T _
L L C

(eikn (x-et) _ ik, (x+ct))

(eiknx . e—iknx )
u(x,t)=e " sin(k x)=e "

2i 2i



Use of Fourier transforms to solve wave equation -- continued
ot’ Ox”
Using superposition: Suppose u(x,t) = ZAne_ia’"’E (x,m,)

=0

O*F - ;
’é();,a)n) :_ac); F(xaa)n) E_kn2 F(x’a)”)

For F(xa))—sin(mrxj k—k = G
L L ¢

— M(X, Z) — ZAne—icont Sin(knx) _ Z A,,f e—ia)nt (eiknx . e_ik”x)

— 2

—Z 21( (x—ct) o (Ha))Ef(x—Cl‘)-l-g(X-l—Cl‘)

Note that at thls point, we do not know the coefficients A, ;
however, it clear that the solutions are consistent with
D’Alembert’s analysis of the wave equation.
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Now consider the Fourier transform for a time periodic function:

Suppose f(t+nT)= f(t) forany integer n

F(Cf))——jdl‘f(z)e’a)t :_Z(J'dtf(t) io(t+nT) j

Note that:
i "l = Q) i 5(w—-1Q), where Q =277Z
Details:

G sin((N+%)a)T)

ma)T 1 ma)T 1
Z e 111 Z e 111 Sln(%a)’r)



sin((N+%)a)T)

sin(%a)T)
ﬂ i 40
30 ﬂ 2 d 4
201 5 — WF—
| T T
10
HIAAAAAAAAAAAA .-.-.',‘illh ............................. M HIAAAAAAAAAAAAAAAN I HAAAAAAAAAAMA
lf li!”l | ‘1 1"
w=0 a
Note that: w —
Ze’”“’T:QZ5(a)—VQ), where QE%Z
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sin((N + %)a)T)

Geometric summation: Z " = sin( 1 a)T)

. Sin((NJr%)a)T) 2725 S(wT —vOT _27 o <2

Nlil}o Sin(%a)T) = ﬁzvl (a) — )—72 (50— )
= inwl N 27[

= Ye" =Y 8(w-1Q), where =

n=—0o0 VY =—00

V_—OO

= (@‘—f i fige™ =5 3 Q5(0-102 [f dtf(t)elwtj

Thus, for a time periodic function

() = j do F(w) e™ = Z F(rQ)e™,

Y=—00

where F(1Q)= ?jdt ft)e"™



Suppose:

0.8-
0.6-

Example:
t—nT

f ()=

F(1)= T dt=F'(-Q)

2mvt j
T

fiy=5-=
T -

04
0.2-

fornTStS(nJrl)T; n

27TV

__t for v=12,3... F(O):

..—3,-2,-1,0,1,2,3...

1
2

10/16/2024

PHY 711 Fall 2024-- Lecture 23

26



Summary —

Definition of Fourier Transform for a function f'(¢) :

f() = T do F(w) e

Backward transform:

F(w) = i j dt f(t) e

Find discrete frequencies o for functions f(t) over finite time
domain of for functions f(t) which are periodic: f(t)=f(t+nT)

=>Numerically, there is an advantage of tabulating double
discrete Fourier transforms (discrete in w and in ¢).



Example:

Suppose: f(t) = Z ~(+nT) Z F(1Q)e ™
a\/7 n=-x© Y=—00
where Q)= 27” and F (VQ) _ 2Le_azvzgz /4
/N Vo /N
[\ [\ AR

W )\ SR I\

[\ [\ [\

\ | / |/ [ N1/ \

T
N
S}

3 VQ 10



Continued: f(¢)= : i o () Ia i Ja (‘/Q)e-mf

Note: "~
C(0) N 272. y
—{v£E2) o=" o
o 1)~ F(WQ™
T (@) V:Z_;M (Q)e
because F(v'Q)~0
v — for |v'|> M

-10 -5 S 5 “10 0 -3
v=-M v=M v —



Constructed frequency periodic function --

Envelope of frequency function F()

-30 -20 -10 0 10 20 30

o~

Falsely periodic frequency function F(w)
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Thus, for any periodic function: f(z) = Z F (VQ)Q‘W

Now suppose that the transformed function 1s bounded;

‘F(Vfl)‘ <¢ for |v|2N

Define a periodic transform function

F(WQ+oW)=F(\Q) for o =..—3,-2,-1,0,1,2,3... where W =((2N +1)Q)

Recall that: i "l = Q) i o (a) — VQ), where = 277[
f(t)= i F(Q)e ™ = i i ﬁ(vQ)e”QfZa(r M j
B (2N+1)QV:_N p 2N +1

For ¢ — m 7. :}f( m1 j: i F(ng)e—i27rvm/(2N+l)
IN+1 2N+1) =,
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Falsely discretized time function £ (¢)
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Doubly periodic functions

[ — i
2N +1
e 1 o 27vi/(2N+1)
— Fe—l v +
“ 2N+1ZN v

N
o 7 i2mvu/(2N+1)
b, = z e



More convenient notation

e I & = —i27vi/ M
p = M Fve #
v=0
~~ M ~~
FV _ Zflueﬂm/y/M
u=0
Note that for W =e"**'"
E,=f W+ fwl+ W+ 0+
E=fWo+ W + W+ W +
E,=f WO+ fW+ W+ fW° +



Note that for W = ¢'**""
= WO+ WO W O+
fWO + W+ LW SR+
:fOWO + W W O+

“qz

However, W" = (eiz”/ M YI =1

and WM — (ei27z/M y‘/@ — _1

Cooley-Tukey algorithm: J. W. Cooley and J. W. Tukey, “An
algorithm for machine calculation of complex Fourier
series” Math. Computation 19, 297-301 (1965)



http://www.fftw.orqg/

Download GitHub  Mailing List Benchmark Features Documentation FAQ Links Feedback

Introduction

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and
complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). We believe that FFTW, which is free software, should
become the FFT library of choice for most applications.

The latest official release of FFTW is version 3.3.10, available from our download page. Version 3.3 introduced support for the AVX x86 extensions, a
distributed-memory implementation on top of MPI, and a Fortran 2003 APL Version 3.3.1 introduced support for the ARM Neon extensions. See the release
notes for more information.

The FFTW package was developed at MIT by Matteo Frigo and Steven G. Johnson.

Our benchmarks, performed on on a variety of platforms, show that FFTW's performance is typically superior to that of other publicly available FFT
software, and 1s even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program
will perform well on most architectures without modification. Hence the name, "FFTW.," which stands for the somewhat whimsical title of "Fastest Fourier
Transform in the West."

Subscribe to the fftw-announce mailing list to receive release announcements (or use the web feed ).
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Fourier series and Fourier transforms are useful for solving
and analyzing a wide variety of functions, also beyond the
Sturm-Liouville context.

Next time, we will consider a related concept — the Laplace
transform.


Presenter Notes
Presentation Notes
We now consider another technique that is uses to solve initial value equations.
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