PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 25: Chap. 7
& App. A-D (F&W)

Generalization of the one dimensional wave equation =
various mathematical problems and techniques including:
1. Complex variables
2. Contour integrals
3. Kramers-Kronig relationships
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Physu:s - Thursday -

COllOQUlum October 24,
2024

Imaging Through Unusual Apertures by 4 P M
Advanced Digital Methods and 3D Tracking O I H 1 0 1
Comparison of a Refractive vs. a Geometric Phase In
Plate

The talk will present methods to resolve the challenges faced
in classical optics with a full aperture imaging system by
utilizing unusual apertures with the method of incoherent
digital holography. The development of superresolution
imaging techniques that provide similar resolution with a
fraction of aperture area as low as 1.4% and 0.48% of the total
aperture area using partial and synthetic aperture (SA)
imaging will be discussed. We developed a novel single-
channel incoherent SA by implementing a single opening
instead of two and it solves a core problem of SA with
multiple channels in the optical regime will be reviewed.
These research attempts to provide an alternative to the large
and bulky reflective mirrors or refractive /diffractive lenses Dr. Angika Bulbul
commonly used in space-based, or ground-based telescopes.

These techniques inspire a new generation of telescopes that Wake Forest
can be lightweight, smaller in size, and cost-effective, while at University
the same time delivering a similar resolution to that from a
large SA telescope system with 3D capabilities. The second
part of the talk will be on tracking biological objects in three
dimensions (3D) for a better understanding of the dynamic
behavior of cellular components. It can be achieved by R ti 3:30
multifocal imaging with diffractive optical elements (DOEs) ccepuon o
converting depth (z) information into a modification of the 2D Olin LObby
image A quantitative comparison of the performance of a

10 /23/2024 E (3rd-generation refractive phasvlate PI’:P;}I}:O 230451‘11—“ Lecturs fé]énmlmm 4:00
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16 Mon, 9/30/2024 |Chap. 4 Small oscillations near equilibrium
17 \Wed, 10/2/2024 |Chap. 1-6 |Review THE-10/3-9/24
18 |Fri, 10/4/2024  |Chap. 4 Normal mode analysis THE-10/3-9/24
19 Mon, 10/7/2024 |Chap. 4 Normal mode analysis in multiple dimensions | THE-10/3-9/24
20 \Wed, 10/9/2024 |Chap. 4&7 |Normal modes of continuous strings THE-10/3-9/24
21|Fri, 10/11/2024 |Chap. 7 The wave and other partial differential equations
22 Mon, 10/14/2024 |Chap. 7 Sturm-Liouville equations #15
23 Wed, 10/16/2024 |Chap. 7 Sturm-Liouville equations #16

Fri, 10/18/2024 |Fall Break
24 \Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions #17
25 Wed, 10/23/2024 |Chap. 7 Complex integration #18
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PHY 711 — Homework # 18
Assigned: 10/23/2024  Due: 10/28/2024
Read Appendix A of Fetter and Walecka.

1. Assume that ¢ > 0 and b > 0; use contour integration methods to evaluate the
integral:

0 eia.x
dx.
/—oc .’L’Z -+ bZ

Note that you may use Maple, Mathematica, or other software to evaluate this
integral, but full credit will be earned by using the contour integration methods.
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Reminder -- Time to think about your presentations due towards
then end of the semester -- best lectures of the class — 2/day

Project

The purpose of this assignment is to provide an opportunity for you to study a topic of your choice in greater depth. The general
guideline for your choice of project is that it should have something to do with classical mechanics, and there should be some
degree of of analytic or numerical computation associated with the project. The completed project will include a short write-up and

a presentation to the class. You may design your own project or use one of the following list (which will be updated throughout the
term).

o Explain the details of a homework problem that was assigned or one you design, including the basic principles and the solution
methods and results.

» Consider a scattering experiment in which you specify the spherically symetric interaction potential V(r). Write a computer
program (using your favorite language) to evaluate the scattering cross section for your system. (Depending on your choice, you
may wish to present your results either in the the center-of-mass or lab frames of reference.)

o Consider the Foucoult Pendulum. Analyze the equations of motion including both the horizontal and vertical motions. You can
either solve the equations exactly or use perturbation theory. Compare the effects of the vertical motion to the effects of air friction.
* Consider a model system of 2 or more interacting particles with appropriate initial conditions, using numerical methods to find
out how the system evolves in time and space. For few particles and special initial conditions this approach can be used to explore
orbital mechanics. For many particles and random 1nitial conditions, this approach can be used to explore statistical mechanics via
molecular dynamics simulations.

» Examine the normal modes of vibration for a model system with 3 or more masses in 2 or 3 dimensions.

* Analyze the soliton equations beyond what was covered in class.
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Basic ideas of complex integration --

For an analytic function, its integral over a closed region in the

complex plane vanishes:

<j> f(z)dz =0

However, consider the integration of a function which has a pole --

Behavior of f(z) = Ln about the pointz =0

A
For an integer n, consider

S[) dz = J. ,Oen ZZ? I-n 2fei(1n)¢id¢:{ 0 n=#l
0

g 2ni n=1



Presenter Notes
Presentation Notes
Examples of non-analytic functions.    Special property of contour integrals about a function with a simple “pole”.


Behavior of f(z) = Ln about the point z =0

z
For an integer n, consider

<ﬁi g zj petidg _ ., T g { 0 n=l
o

g p”ein(é g 2ri n=1

This observation helps us to focus on a special kind

of singularity called a "pole"

For f(z) 1nthe vicinity of z = Z,: f(2)~ g(zp )
zZ—2z
p
Therefore: qu(z)dz =0 or (j)f(z)dz _ g(Zp)q.D dz  _ 2rig(z)
z-z,

Integration does Integration does
not include z, include z,



®
<ﬁ f(2)dz =27y Res(f(z,))
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Presenter Notes
Presentation Notes
Contributions to a closed contour from various contributions.


.

General formula for determining residue:

Res( f(z
Suppose that in the neighborhood of z |, f(z) » hz)  _ (f ( p))

N —

Z_Zp) z>z, Z_Zp

Since h(z) = (z -z, )m f(z) 1s analytic near z ,, we can make a Taylor exansion

m—1
| di(z))  (z-z,) d"'i(z,)
about z, : h(z)~ h(zp)—l—(z—zp)Tp—l—...—l— D) dz’"‘lp +....

d" z-z, mf(z) \
— Res(f(zp)) = hm< l (( ) )

S (m-1))! dz""!

In the following examples m=1


Presenter Notes
Presentation Notes
Residue theorem


Example: j j dx 4+ 0 _C_‘S
. ' 1+x 1+z*
1 Im(z)
I >
1+ 2 :(Z_em/4)(2_e3m/4)(z_e—m/4)(z_e—3m/4) Re(z)
Cj) lj; dz = 27zi(Res(zp = ei”/4)+ Res(zp = e3i”/4)) ,l;ﬁt?'
Res(z , = eim) = e:: Res(z = 63’”/ )=— -

T
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Presenter Notes
Presentation Notes
Example of a contour integral using the residue theorem.


.

Some details: : _
Note that: " =—-1=¢e""
2
z =3ix/4 __ in/d—inr __ ir/4
f(Z):1+Z4 e =e = —e

(eiﬁ/4 )2

_ irl4\ _
Res(f (z=e ) B ( o _ esmm)( o4 _ oIl )( o4 _ e—3m/4)

/2
B em

(eiﬁ/4 + e—iﬂ'/4 )(eiﬂ/4 . e—i;z/4 ) (eiﬂ'/4 + eiﬂ'/4 )

irr/4 ir/4
e e

2(i—(-1)) 4

Question — Could we have chosen the contour in the lower half
plane?
a. Yes b. No


Presenter Notes
Presentation Notes
Some details.


©  cos(ax)
Another example: 1 :0 4274 n 5232 n 1 dx

o0 ax 1az

©  cos(ax) ] e ] e
dx =— dx =— dz
I4x4+5x2+1 2j4x4+5x2+1 2<"54Z4+522+1

0 —00

4Z4+SZ2+1=4(Z—l')(Z—%)(Z+Z')(Z+%) N0t1e:
m-=

Im(z)

/= 27ri(Res(zp = i)+ReS(ZP :l))


Presenter Notes
Presentation Notes
Another example.


iaz

r 1
[ fos(“’? dy=—§———dz
Vaxt vs 41 27420 1527 41

zzﬂi(Res(zp = z') + Res(zp = é))
7T

:g(—e_a +2e 77 )

Question — Could we have chosen the contour in the lower half
plane?
a. Yes b. No

Note that fora>0and z, >0

laz az
R 1
e

in the lower half plane: €“ =¢


Presenter Notes
Presentation Notes
Some details.


.

* xsin kx
Another example: I = jx2+a2 dc fork>0anda>0
( xsmkx 1% xe™ 1+ 2o
= ~dz
J-X +a l_"-xz ZCPZ +Cl
z°+a —( z—1ida (z+za)
tIm(z)
>
Re(z)

[= 27Z'i(RGS(Zp = ia)) _ ok
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Presenter Notes
Presentation Notes
Another example


Some details --

I xsmkx 15 xe™ 1 ¢ ze™
a2
oox +a’ 1Y X"+ 1 z°4+a
z* +a’ :( —za)(z+za)
| ze'™ | ze'™
—ﬁj) ——dz =2ri-lim| (z —ia)———
i Y 2P+ a’ | zia z* +a
1 ige™™ _
=27l — — e ™

I 2ia


Presenter Notes
Presentation Notes
More details.


From the Drude model of dielectric response --

2 o —ioT
@ e .
G(r)=—" | do———— where w,, @,, and y are positive constants
277 @y, —o" —iyw
Upper hemisphere:
,} Im(Z) 7= x4+ ly e—ia)r — e—ixr+yr

— Converges for 7 <0

e(z)

Lower hemisphere:
7/2 iot IXT— YT
2 z=x—-1y €  =e¢
V, =40 —— 4
0 0
4 = Converges for 7 >0
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.

From the Drude model of dielectric response -- continued --

2 —ioT

)
G(r)=—= [ do——=
27 w,—w

5 where w,, @,, and y are positive constants

— iy

0 for 7 <0

G(7) = a)ﬁ Ve SINVT

for >0

€

Vo


Presenter Notes
Presentation Notes
Another example from the Drude model.


Cauchy integral theorem for analytic function f(z):

L [ &)

2m1 Jo 2 — 2z

f(2)
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Presenter Notes
Presentation Notes
Another useful theorem from Cauchy.


)
Example

Suppose f(]z‘ —> oo) =0 and forz =x:
J(x) = a(x)+ib(x)

tIm(z)

il N

>

Re(z)
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Presenter Notes
Presentation Notes
Considering real and imaginary parts.


o Example -- continued

flz)= 1.§f (Z')dz' where f(x) = a(x)+ib(x)
2mY z'—

z
tIm(z)
Re(z)
a(x)+ib(x) =L a(x )+zb(x )dx' +0

27i = X'=x
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Presenter Notes
Presentation Notes
Real and imaginary parts for Cauchy’s integral relation.


Example -- continued

t im(zZ)
X Re(2)

Tf(X') o= | S j /(x) dx.;f ()

!

dx'

X'—Xx xX'—X
&

o0

il

—Q0

J '(_x') dx'+irz [ (x)

X
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Presenter Notes
Presentation Notes
Detail of how to evaluate the point x=x’ in terms of the principal parts integral.


m(z’)
X Re(2)
let u=x'-x
let x> x+in .
O
xX+& x' & 1 &
[ G ~f(x)hm —du=f()lim [ X g,
h x'—x 77—)0 _”7 77—)0 u _|_77
=iz f(x)  since lim i ~imd(u)
10 1% +17°
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Presenter Notes
Presentation Notes
Some details.


More details -- n

Iim————~ 7o (u)
>0u” +n
100
SOI
60
40§
Jg
—I1 I—(IP.SI o 0 OIS 1
u
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Presenter Notes
Presentation Notes
Justification of the delta function result.


= Example -- continued

o= [ L e | L e [ 08
N RACI Y
—PJ;O . dx'+irm f(x)

- P Talx)+ibx) , ]
alx)+ib(x)=— j dx'+—(a(x)+ib(x))
27Z'l b _X'—x 2721
— a(x): P Tb'(X') dx’ b(x): _ P sza'(x') dx’

7T S X 7T X=X

Kramers-Kronig relationships

dx'


Presenter Notes
Presentation Notes
Final result relating real and imaginary parts of complex function.


.

Comment on evaluating principal parts integrals

a(x):f;]?b(x')dx': lim (lf (xv)d“; T b(x')dx')

x'—x e—>0 7Y x'—-x x'—x

—o0 —00 x+e

J

Y
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Presenter Notes
Presentation Notes
Some details.


Example:

b(x'):<

forx'<—-2L, —L<x'<L, x'>2L

for L<x'<?2L
for —-2L<x'<-L
,b(X)

-2L -L l

10/23/2024
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Presenter Notes
Presentation Notes
Simple example for complex function.


forx'<—-2L, —L<x'<L, x'>2L
b(x')=4 B, for L<x'<2L
—B, for —2L<x'<-L
P % b(x' im (1°Fb(x) . 1%b(x'
CI(X)Z ( )dxv: [ j ( )dxv_l_ J' ( )dX']
T x'—Xx e>0\ 77 x'-x T X=X

Forx<-2L or x>2L —-L<x<L:

~B ¢ dx' B ¢ dx'
a(x) = OI — + Oj '
T 5, X=X T 7 X=X
2 2
_ BOln x+L +&ln x—2L —&ln x2 4[2,
T x+2L T x—L T x =L



Presenter Notes
Presentation Notes
For given imaginary function, this is the form of the real function.
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Presenter Notes
Presentation Notes
Summary of results.


®
Summary

For a function f(x), analytic along the real line:

f(x)= m(f(X))+iS(f(X)) = a(x)+ib(x)

:a(x)zﬁTbgf')dx' b(x) —gT a(x')dx'

T x'—x xX'—Xx
Example:

1 X 1
f(x)=—— alx)=— b(x) =——

X+1 x +1 x°+1
Check:
I?
PG b(x' P % 1 '
[ (x)dx'z——j —dy'=—— =a(x)

TS X'—X ﬂ_w(x'—x)(x' +1) x°+1
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Presenter Notes
Presentation Notes
Summary.


Continued:

gzb@)

,___OO 1
x' xdx - 7[_'[0()6' x)(x +1)

:_;_‘[o (x'—x)(x'2+1

x+x'

ZT[@WHXﬁ+0}hZ(fiQZLXix

Note that: _[

X+e

o
[

x'—x

EI dx —11m1n(X_xj:O
T * Xoo A\ X +x

Y - —a)

T

10/23/2024

dx'=In(X —x)—In(e) = ln(

dx'=—In(—X —x)+In(—€) = —ln(

)(x2+1)de'_(x2+l)

X—xj

€

X—i—x)
€

0

e

72.00

e
I

—o0

a’x '=]
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