

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes on Lecture 27 – Chap. 9 in F & W

Introduction to hydrodynamics

Motivation for topic Newton's laws for fluids Conservation relations

23	Wed, 10/16/2024	Chap. 7	Sturm-Liouville equations	<u>#16</u>
	Fri, 10/18/2024	Fall Break		
24	Mon, 10/21/2024	Chap. 7	Laplace transforms and complex functions	<u>#17</u>
25	Wed, 10/23/2024	Chap. 7	Complex integration	<u>#18</u>
26	Fri, 10/25/2024	Chap. 8	Wave motion in 2 dimensional membranes	<u>#19</u>
27	Mon, 10/28/2024	Chap. 9	Motion in 3 dimensional ideal fluids	<u>#20</u>
28	Wed, 10/30/2024	Chap. 9	Motion in 3 dimensional ideal fluids	
29	Fri, 11/01/2024	Chap. 9	Ideal gas fluids	

PHY 711 -- Assignment #20

Assigned: 10/28/2024 Due: 11/04/2024

Read Chapter 9 in Fetter & Walecka.

1. A tank having an area of 100 m² is open to the atmosphere and contains 1000 m³ of water. It has a spigot at it bottom which has a height of 1 m above a drain in the floor. A hose having a diameter of 1 cm is used to empty the water from the tank when the spigot is opened. Using Bernoulli's analysis, estimate the time it takes to empty the tank via the floor drain.

Now is a good time to start thinking about your projects --

10/28/2024

Presentation expectations

- Prepare with powerpoint (or equivalent) for ~ 20 minutes and expect ~ 5 minutes for discussion (2 presentations per day)
- To accommodate all students, we will need 2 days....
- Details listed on webpage
 <u>http://users.wfu.edu/natalie/f23phy711/info/computational.html</u>

Hydrodynamic analysis

Motivation

- 1. Natural progression from strings, membranes, fluids; description of 1, 2, and 3 dimensional continua
- 2. Interesting and technologically important phenomena associated with fluids

Plan

- 1. Newton's laws within fluids (leaving out dissipative effects for now)
- 2. Continuity equation
- 3. Stress tensor
- 4. Energy relations
- 5. Bernoulli's theorem
- 6. Various examples
- 7. Sound waves

Newton's equations for fluids Use Euler formulation; following "particles" of fluid Variables: Density $\rho(x,y,z,t)$ Pressure p(x,y,z,t)Velocity $\mathbf{v}(x,y,z,t)$ $m\mathbf{a} = \mathbf{F}$ $m \rightarrow \rho dV$ $\mathbf{a} \rightarrow \frac{d\mathbf{v}}{dt}$ $\mathbf{F} \rightarrow \mathbf{F}_{applied} + \mathbf{F}_{pressure}$

$$F_{pressure}\Big|_{x} = \left(-p(x+dx, y, z) + p(x, y, z)\right) dydz$$
$$= \frac{\left(-p(x+dx, y, z) + p(x, y, z)\right)}{dx} dxdydz$$

$$= -\frac{\partial p}{\partial x} dV$$

Newton's equations for fluids -- continued

Detailed analysis of acceleration term:

$$\mathbf{v} = \mathbf{v}(x, y, z, t)$$

$$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial x}\frac{dx}{dt} + \frac{\partial \mathbf{v}}{\partial y}\frac{dy}{dt} + \frac{\partial \mathbf{v}}{\partial z}\frac{dz}{dt} + \frac{\partial \mathbf{v}}{\partial t}$$

$$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial x}\mathbf{v}_{x} + \frac{\partial \mathbf{v}}{\partial y}\mathbf{v}_{y} + \frac{\partial \mathbf{v}}{\partial z}\mathbf{v}_{z} + \frac{\partial \mathbf{v}}{\partial t}$$

$$\frac{d\mathbf{v}}{dt} = (\mathbf{v} \cdot \nabla)\mathbf{v} + \frac{\partial \mathbf{v}}{\partial t}$$

Note that: $\mathbf{v} \equiv v_x \hat{\mathbf{x}} + v_y \hat{\mathbf{y}} + v_z \hat{\mathbf{z}}$

$$(\mathbf{v} \cdot \nabla) \mathbf{v} = v_x \frac{\partial \mathbf{v}}{\partial x} + v_y \frac{\partial \mathbf{v}}{\partial y} + v_z \frac{\partial \mathbf{v}}{\partial z} = \nabla \left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v}\right) - \mathbf{v} \times (\nabla \times \mathbf{v})$$

10/28/2024

PHY 711 Fall 2024 -- Lecture 27

Some details --

$$\begin{split} \left(\mathbf{v}\cdot\nabla\right)\mathbf{v} &= v_{x}\frac{\partial\mathbf{v}}{\partial x} + v_{y}\frac{\partial\mathbf{v}}{\partial y} + v_{z}\frac{\partial\mathbf{v}}{\partial z} = \nabla\left(\frac{1}{2}\mathbf{v}\cdot\mathbf{v}\right) - \mathbf{v}\times\left(\nabla\times\mathbf{v}\right) \\ v_{x}\frac{\partial\mathbf{v}}{\partial x} &= v_{x}\left(\frac{\partial v_{x}}{\partial x}\,\hat{\mathbf{x}} + \frac{\partial v_{y}}{\partial x}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial x}\,\hat{\mathbf{z}}\right) \qquad v_{y}\frac{\partial\mathbf{v}}{\partial y} = v_{y}\left(\frac{\partial v_{x}}{\partial y}\,\hat{\mathbf{x}} + \frac{\partial v_{y}}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial y}\,\hat{\mathbf{z}}\right) \\ v_{z}\frac{\partial\mathbf{v}}{\partial z} &= v_{z}\left(\frac{\partial v_{x}}{\partial z}\,\hat{\mathbf{x}} + \frac{\partial v_{x}}{\partial z}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial z}\,\hat{\mathbf{z}}\right) \\ \nabla\left(\frac{1}{2}\,\mathbf{v}\cdot\mathbf{v}\right) &= v_{x}\left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{x}}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial v_{x}}{\partial z}\,\hat{\mathbf{z}}\right) + v_{y}\left(\frac{\partial v_{y}}{\partial x}\,\hat{\mathbf{x}} + \frac{\partial v_{y}}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial z}\,\hat{\mathbf{z}}\right) \\ \mathbf{v}\times\left(\nabla\times\mathbf{v}\right) &= \hat{\mathbf{x}}\left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{x}}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial z}\,\hat{\mathbf{z}}\right) + v_{y}\left(\frac{\partial v_{y}}{\partial x}\,\hat{\mathbf{x}} + \frac{\partial v_{y}}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial v_{z}}{\partial z}\,\hat{\mathbf{z}}\right) \\ \mathbf{v}\times\left(\nabla\times\mathbf{v}\right) &= \hat{\mathbf{x}}\left(v_{y}\frac{\partial v_{y}}{\partial x} + v_{z}\frac{\partial v_{z}}{\partial x} - v_{y}\frac{\partial v_{x}}{\partial y} - v_{z}\frac{\partial v_{x}}{\partial z}\right) + \hat{\mathbf{y}}\left(v_{z}\frac{\partial v_{z}}{\partial y} + v_{x}\frac{\partial v_{x}}{\partial y} - v_{z}\frac{\partial v_{y}}{\partial x}\right) \\ &\quad + \hat{\mathbf{z}}\left(v_{x}\frac{\partial v_{x}}{\partial z} + v_{z}\frac{\partial v_{x}}{\partial y} - v_{x}\frac{\partial v_{z}}{\partial x} - v_{y}\frac{\partial v_{z}}{\partial y}\right) \end{split}$$

Newton's equations for fluids -- continued

$$\rho \frac{d\mathbf{v}}{dt} = \rho \left(\left(\mathbf{v} \cdot \nabla \right) \mathbf{v} + \frac{\partial \mathbf{v}}{\partial t} \right) = \rho \mathbf{f}_{applied} - \nabla p$$
$$\rho \left(\nabla \left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) - \mathbf{v} \times (\nabla \times \mathbf{v}) + \frac{\partial \mathbf{v}}{\partial t} \right) = \rho \mathbf{f}_{applied} - \nabla p$$
$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2} v^2 \right) - \mathbf{v} \times (\nabla \times \mathbf{v}) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$

Solution in the case of irrotational flow.

Irrotational flow:
$$\nabla \times \mathbf{v} = 0$$

 $\nabla \times \mathbf{v} = \hat{\mathbf{x}} \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right)$

Which of the following vector functions have zero curl? a. $\mathbf{v}=C\hat{\mathbf{x}}$ (*C* is a constant)

- b. $\mathbf{v}=Cx\hat{\mathbf{x}}$
- c. $\mathbf{v} = Cy\hat{\mathbf{x}}$

Solution of Euler's equation for fluids

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2} v^2\right) - \mathbf{v} \times \left(\nabla \times \mathbf{v}\right) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$

Consider the following restrictions:

1. $(\nabla \times \mathbf{v}) = 0$ "irrotational flow" \Rightarrow **v** = $-\nabla \Phi$ Φ is "velocity potential" 2. $\mathbf{f}_{applied} = -\nabla U$ conservative applied force 3. $\rho = (\text{constant})$ incompressible fluid $\frac{\partial \left(-\nabla \Phi\right)}{\partial t} + \nabla \left(\frac{1}{2}v^2\right) = -\nabla U - \frac{\nabla p}{2}$ $\Rightarrow \nabla \left(\frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t}\right) = 0$

Bernoulli's integral of Euler's equation for irrotational and incompressible fluid

$$\nabla \left(\frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t}\right) = 0$$

Integrating over space :

$$\frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial\Phi}{\partial t} = C(t)$$
where $\mathbf{v} = -\nabla\Phi(\mathbf{r}, t) = -\nabla(\Phi(\mathbf{r}, t) + C'(t))$

$$\Rightarrow \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial\Phi}{\partial t} = 0$$
Bernoulli's theorem

Examples of Bernoulli's theorem

$$\frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial\Phi}{\partial t} = 0$$

Modified form; assuming
$$\frac{\partial \Phi}{\partial t} = 0$$

Examples of Bernoulli's theorem -- continued

 $v_2 \approx \sqrt{2gh}$

Examples of Bernoulli's theorem -- continued

$$U_{1} = U_{2}$$

$$v_{1}A = v_{2}a$$
continuity equation
$$\frac{p_{1}}{\rho} + U_{1} + \frac{1}{2}v_{1}^{2} = \frac{p_{2}}{\rho} + U_{2} + \frac{1}{2}v_{2}^{2}$$

$$p_{10/28/2024}$$
PHY 711 Fall 2024 -- Lecture 27

17

Examples of Bernoulli's theorem -- continued

Examples of Bernoulli's theorem – continued Approximate explanation of airplane lift

Cross section view of airplane wing

http://en.wikipedia.org/wiki/Lift_%28force%29

Question -- What aspects do over simplified Bernoulli's equation not include in studying fluid dynamics?

According to a Scientific American article, the conclusion that $v_2 > v_1$ because of the shape of the airplane wing is not quite true and because viscosity has an important effect. Numerical modeling reveal a more complicated picture.

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/

At NASA Ames Fluid Mechanics Laboratory, streamlines of dye in a water channel interact with a model airplane. Credit: *Ian Allen* (copied from Scientific American page mentioned above).

Continuity equation connecting fluid density and velocity:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \mathbf{v}) + (\nabla \rho) \cdot \mathbf{v} = 0$$

Consider: $\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + (\nabla \rho) \cdot \mathbf{v}$

$$\Rightarrow \frac{d\rho}{dt} + \rho (\nabla \cdot \mathbf{v}) = 0$$
 alternative form

of continuity equation

Some details on the velocity potential Continuity equation :

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \mathbf{v}) + (\nabla \rho) \cdot \mathbf{v} =$$

For incompressible fluid : $\rho = (\text{constant})$

$$\Rightarrow \nabla \cdot \mathbf{v} = 0$$

Irrotational flow : $\nabla \times \mathbf{v} = 0$

$$\Rightarrow \nabla^2 \Phi = 0$$

()

10/28/2024

 \Rightarrow v = $-\nabla \Phi$

Example – uniform flow

 $\nabla^{2}\Phi = 0$ $\frac{\partial^{2}\Phi}{\partial x^{2}} + \frac{\partial^{2}\Phi}{\partial y^{2}} + \frac{\partial^{2}\Phi}{\partial z^{2}} = 0$

Possible solution :

$$\Phi = -v_o z$$
$$\mathbf{v} = -\nabla \Phi = v_o \hat{\mathbf{z}}$$

10/28/2024

PHY 711 Fall 2024 -- Lecture 27

Example – flow around a long cylinder (oriented in the **Y** direction)

 $\nabla^2 \Phi = 0$ $\frac{\partial \Phi}{\partial r} \bigg|_{r=a} = 0$

Laplace equation in cylindrical coordinates

(r, θ , defined in x-z plane; y representing cylinder axis)

$$\nabla^2 \Phi = 0 = \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

In our case, there is no motion in the y dimension

$$\Rightarrow \Phi(r,\theta,y) = \Phi(r,\theta)$$

From boundary condition : $v_z(r \rightarrow \infty) = v_0$

$$\frac{\partial \Phi}{\partial z} (r \to \infty) = -v_0 \qquad \Rightarrow \Phi(r \to \infty, \theta) = -v_0 r \cos \theta$$

Note that :
$$\frac{\partial^2 \cos \theta}{\partial \theta^2} = -\cos \theta$$

Guess form :
$$\Phi(r, \theta) = f(r) \cos \theta$$

10/28/2024 PHY 711 Fall 2024 -- Lecture 27

26

Necessary equation for radial function

$$\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial f}{\partial r} - \frac{1}{r^2}f = 0$$

$$f(r) = Ar + \frac{B}{r} \qquad \text{where } A, B \text{ are constants}$$

Boundary condition on cylinder surface :

$$\frac{\partial \Phi}{\partial r} \bigg|_{r=a} = 0$$
$$\frac{df}{dr} (r=a) = 0 = A - \frac{B}{a^2}$$
$$\implies B = Aa^2$$

Boundary condition at ∞ : $\Rightarrow A = -v_0$

10/28/2024

$$\Phi(r,\theta) = -v_0 \left(r + \frac{a^2}{r}\right) \cos \theta$$
$$v_r = -\frac{\partial \Phi}{\partial r} = v_0 \left(1 - \frac{a^2}{r^2}\right) \cos \theta$$
$$v_\theta = -\frac{1}{r} \frac{\partial \Phi}{\partial \theta} = v_0 \left(1 + \frac{a^2}{r^2}\right) \sin \theta$$

For 3-dimensional system, consider a spherical obstruction Laplacian in spherical polar coordinates:

$$\nabla^2 \Phi = 0 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \varphi^2}$$

to be continued ... 10/28/2024 -- Lecture 27