
PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin 103

Notes on Lecture 27 – Chap. 9 in F & W

Introduction to hydrodynamics
 

1. Motivation for topic
2. Newton’s laws for fluids
3. Conservation relations
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Presenter Notes
Presentation Notes
In this lecture we will begin an introductory treatment of the mechanics of fluids.
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Now is a good time to start thinking about your projects --

Last day 
of classPresentations?

Presentations?

Take home final

Thanksgiving

~ 2 days needed
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Presentation expectations
• Prepare with powerpoint (or equivalent) for ~ 20 

minutes and expect ~ 5 minutes for discussion (2 
presentations per day)

• To accommodate all students,  we will need 2 days….
• Details listed on webpage 

http://users.wfu.edu/natalie/f23phy711/info/computational.html

http://users.wfu.edu/natalie/f23phy711/info/computational.html


10/28/2024 PHY 711  Fall 2024 -- Lecture 27 5

Hydrodynamic analysis
Motivation

1. Natural progression from strings, membranes, fluids; 
description of 1, 2, and 3 dimensional continua

2. Interesting and technologically important phenomena 
associated with fluids

Plan
1. Newton’s laws within fluids (leaving out dissipative 

effects for now)
2. Continuity equation
3. Stress tensor
4. Energy relations
5. Bernoulli’s theorem
6. Various examples
7. Sound waves

Presenter Notes
Presentation Notes
Here is a list of topics that will be covered in the next few lectures.
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Newton’s equations for fluids
 Use Euler formulation; following “particles” of fluid

pressureapplied

dt
d

dVm
m

FFF

va

Fa

+→

→

→
=
ρ

(x,y,z,t)
p(x,y,z,t)
(x,y,z,t) 

v  Velocity                        
    Pressure                       
 Density         :Variables ρ

Presenter Notes
Presentation Notes
Newton’s laws need to be adapted to describe the physics of fluids.   Here pressure is important and more generally, the functions used to describe fluids depend on position and time.
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Presenter Notes
Presentation Notes
Pressure acts in all directions.    Here we argue that the spatial derivative of the pressure applies a force to a volume of fluid.
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Newton’s equations for fluids -- continued
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Presenter Notes
Presentation Notes
It is convenient to write Newton’s law in terms of the mass density, velocity, and pressure of the fluid.
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Detailed analysis of acceleration term:
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Presenter Notes
Presentation Notes
Because of the continuous nature of the velocity,  the total time derivative of the fluid velocity depends both or the partial derivates with respect to space and with respect to time as derived here.
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Some details --
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Newton’s equations for fluids -- continued
 

Presenter Notes
Presentation Notes
Some alternative expressions for the velocity terms.
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Solution in the case of irrotational flow.

ˆ

Irrotational flow:   0
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Solution of Euler’s equation for fluids
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Presenter Notes
Presentation Notes
The restricted equations have some interesting properties.
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Bernoulli’s integral of Euler’s equation for irrotational and 
incompressible fluid
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Presenter Notes
Presentation Notes
This result is known as Bernoulli’s equation
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Examples of Bernoulli’s theorem

constant

0  assuming form; Modified

0

2
2
1

2
2
1

=++

=
∂
Φ∂

=
∂
Φ∂

−++

vUp
t

t
vUp

ρ

ρ

1

22
22

1
2

22
12

1
1

1

1

21

21

0

vUpvUp
v

ghUU
ppp atm

++=++

≈
=−

==

ρρ

Presenter Notes
Presentation Notes
This is a problem illustrating Bernoulli’s equation   as a syphon.
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Examples of Bernoulli’s theorem -- continued
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Presenter Notes
Presentation Notes
This example is taken from the PHY 114 textbook
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Examples of Bernoulli’s theorem -- continued
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Presenter Notes
Presentation Notes
Another ezample of Bernoulli’s equation for a syringe.
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Examples of Bernoulli’s theorem -- continued
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Presenter Notes
Presentation Notes
Syringe fluid continued.
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Examples of Bernoulli’s theorem – continued
      Approximate explanation of airplane lift

Cross section view of airplane wing
    http://en.wikipedia.org/wiki/Lift_%28force%29
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Presenter Notes
Presentation Notes
This example of Bernoulli’s equation is oversimplified.    It appeared in most of the old textbook, but seems now to be deemphasized.    It is given here since it  shows some aspects of fluid flow, although apparently not good enough.  

http://en.wikipedia.org/wiki/Lift_(force)
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Question -- What aspects do over simplified Bernoulli's 
equation not include in studying fluid dynamics?

According to a Scientific American article,  the conclusion 
that v2>v1 because of the shape of the airplane wing is not 
quite true and because viscosity has an important effect.  
Numerical modeling reveal a more complicated picture.

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/
 

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/


10/28/2024 PHY 711  Fall 2024 -- Lecture 27 21

At NASA Ames Fluid Mechanics Laboratory, streamlines of dye in 
a water channel interact with a model airplane. Credit: Ian Allen
(copied from Scientific American page mentioned above).
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Continuity equation connecting fluid density and velocity:
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Presenter Notes
Presentation Notes
The continuity equation is an important aspect of fluid flow.
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Some details on the velocity potential
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Presenter Notes
Presentation Notes
For an incompressible and irrotational fluid,   it is mathematically convenient to express the velocity field in terms of a velocity potential field.
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Presenter Notes
Presentation Notes
For a uniformly fluid flowing along the z direction, the velocity potential and velocity field are easily written as shown.
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Example – flow around a long cylinder (oriented in 
the  Y   direction)
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0

02

=
∂
Φ∂

=Φ∇

=arr

X̂

Ẑ
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Presenter Notes
Presentation Notes
Now consider the uniform fluid  in the presence of an impediment.    In the is case we consider a cylindrical log.
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Presenter Notes
Presentation Notes
We need to consider solutions of the Laplace equation.
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Presenter Notes
Presentation Notes
Particular equations for this geometry and the application of the boundary values.
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For 3-dimensional system, consider a spherical  obstruction
Laplacian in spherical polar coordinates:
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to be continued …

Presenter Notes
Presentation Notes
More details.
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