PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 28 --Chap.9inF & W

Introduction to hydrodynamics
1. Newton’s laws for fluids and the continuity equation
2. Irrotational and incompressible fluids
3. lIrrotational and isentropic fluids

4. Approximate solutions in the linear limit — next time

10/30/2024 PHY 711 Fall 2024 -- Lecture 28 1


Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of hydrodynamics which is presented in Chapter 9 of your textbook.


4 PM

Physics - Thursda

Colloquium B2
2024

From stable trapping to turbulence:
Nonlinear dynamics in gravitational
systems

Turbulence is a universal feature in many
nonlinear systems, with broad applications across
physics, from classical fluid mechanics to
gravitational dynamics. Understanding the
dynamics of spacetimes with stable trapping—
regions where energy can be confined for long
times—is crucial for exploring complex
gravitational systems. In this talk, [ will describe
the behavior of nonlinear scalar waves on a simple Avendano
model spacetime that admits such trapping. While

Dr. Alejandro Cardenas-

linear waves exhibit slow decay, we show that CCS-2/CNLS
nonlinear waves lead l':o turbulent behavior due to Los Alamos National
energy cascading to higher modes. Our results Laborat

offer insights into the stability of exotic aboratory

spacetimes in general relativity, potentially ruling
out certain types of instability.
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Chap. 9

|deal gas fluids
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Presenter Notes
Presentation Notes
Homework 18 is due Friday.


PHY 711 -- Assignment #21
Assigned: 10/30/2024 Due: 11/04/2024

Continue reading Chapter 9 in Fetter & Walecka.

1. Consider the example discussed in Lecture 27 & 28, concerning the flow of an incompressible
fluid in the z direction in the presence of a stationary cylindrical log oriented in the y direction. For
this homework problem, the log is replaced by a stationary sphere. Find the velocity potential for
this case, using the center of the sphere as the origin of the coordinate system and spherical

polar coordinates.
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Newton’s equations for fluids

Use Euler formulation; properties described in terms of
stationary spatial grid

Variables: Density p(x,y,z,t)

Pressure p(x,y,z,t)

Velocity  v(x,y,z,t)

Partic

catr: r,t

Partic

eatt': r+vor,t'
t'=t+ot
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Presenter Notes
Presentation Notes
Resuming our discussion of Newton’s equations for fluids.    For reference, this approach is named for Euler and is based on the continuous fluid being represented within an infinitesimal volume.


Euler analysis -- continued

Particleat¢: r.t

Particleat¢': r+vott' where ¢'=t¢+ 0t

For f(r,?):

_J 1 (f(l’,l")—f(l’,f) _|_f(r+V5t>t)_f(r9t)j
ot—0 5t 5t

df:aer(V-V)f

dt ot


Presenter Notes
Presentation Notes
While the infinitesimal volume moves from t to t’, the spatial position moves from r to r+v dt


_ v
o TV
dv.  0Ov
F X — X
or f —>v. e +(V V)vx
dv 0Ov
For f —v, d—::a—ter(V Vv,
dv. Ov
F ==y (ve
or f —>v, ey +(v-V)v,
In vector form av _ v +(V-V)V
dt Ot

Note that (V°V)V=[V i+v i+v ij(vxfﬂrv y+v.z

"ox oy oz



V= V(x,y,z,t)

In vector form v _ov +(v-V)v

dt ot

Note that (v-V)v = (vx%+vy%+vz éj(vxi+vy§f +v22)
I%VMZ — Vx(Vx V)
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For example, applying this analysis to
Newton’s equation of motion for fluids:

ma = Fapplied + Fpressure m = pd V
dv
,Od J— = fapp lied pd V — (Vp )d 4 f _ Fapplied
dt applied
dv m
7  applied Vp Fpressure — _vp dV

dv oV
IOZ:IO(E_F(V.V)Vj:pfappZied _Vp



Continuity equation:

op

P.v. —0

~ V(o)
%—f+p(V-V)+(Vp)°V=O

The notion of the continuity is a common feature of continuous
closed systems. Here we assume that there are no
mechanisms for creation or destruction of the fluid.
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.

Continuity equation:

6—'0+V-(,0V):O

Ot

Pt p(V-v)+(Vp)-v =0 .
ot velocity
For incompressible fluid: p = (constant) potential
=>V-v=0 ‘
Irrotational flow: Vxv=0 —~v=_Vbd

For irrotational flow of an incompressible fluid: V’® =0
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Presenter Notes
Presentation Notes
Another aspect of the fluid is the continuity equation.    This simplifies to a velocity field which has zero divergence.
For irrotational flow the velocity field has zero curl and therefore can be written in terms of the velocity potential.   Irrotational flow of an incompressible fluid satisfies the Laplace equation.


Checking --

Why does V xv =0 imply that v=—VO?

Consider: VO = agi + @Eﬁ + 822
Ox oy Oz

2 2
= oo — oo = (0 Similar results for other directions.
Y 0y0z 0zOy

Vx(VO)




Example of irrotational flow of an incompressible

fluid — uniform flow

b

\AAAAS

VD =0

oO°d o0*'d O°D
>t L T =0

Ox oy Oz

Possible solution ;

O=—v:z
v=-VD=v7z
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Presenter Notes
Presentation Notes
Consider an example of irrotational flow of an incompressible fluid.    In this case the fluid is flowing uniformly along the z axis.


Example — flow around a long cylinder (oriented in

the Y direction)

\AAAAL

VD =0
L
or

r=a
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Presenter Notes
Presentation Notes
Now imagine the there is a log  that distorts the flow.    Here the long axis of the log is in the direction perpendicular to the screen.    At the boundary of the log, the radial velocity is 0.


® .. L :
Laplace equation in cylindrical coordinates

(r,0,defined 1n x-z plane; y representing cylinder axis)
2 2
qu):():l 0 r6®+ 12 0 CIZD+8 C?
ror or r° 00" oy
In our case, there 1s no motion in the y dimension
= ®(r,6,y)=D(r,0)

From boundary condition : v, (r —> OO) =V,

%(D (r = o0)=—v, = ®(r — ©0,6)=—v,rcosb
z

2
Note that : g 002s 0 =—cos{

06

Guess form: ®(r,8)= f{r)cos®


Presenter Notes
Presentation Notes
Setting up and solving the boundary value problem.


- Necessary equation for radial function

10 o |1
——F == =0
ror or r’ 4
B
f(r)y=Ar+— where A, B are constants
r
Boundary condition on cylinder surface:
o
or|._,
B
9 —((r=a)=0=4——
dr a’
= B=Aa’

Boundary conditionas r — oo = 4=-v,


Presenter Notes
Presentation Notes
Some details.


CD(r,H) =—V,| r+
oD
vV =——=V,| -
or
b 10D )
? r 00 ’
W3
10/30/2024

For r > w

Vv, cos0r —v,sin 00 = v,z

A
Vy Z

\AAAAL
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Presenter Notes
Presentation Notes
Full solution and simplified behavior far from the log.


Now consider the case of your homework problem --

For 3-dimensional system, consider a spherical obstruction

Laplacian in spherical polar coordinates:

2
voo0- LA, L2 ,00), 1o
or r°siné 06 00 *sin” @ Og

r° or



Spherical system continued:

Laplacian in spherical polar coordinates:

2
VO = O—Li(r an-F 21. 5(8111852) .12 (9C12)
r° or or r°sin@ 06 00 ) r’sin’ 0 o
In terms of spherical harmonic functions:

! a(smﬁﬁj L9 ly (6,6)=—1(1+1)Y, (6.9)
sin@ 00 06 ) sin*0o¢p* | " mA

In our case:

3
Y,(6.¢)=, /E cosf

CI3(7’ 0,9)=1(r)Y,,(0,9)

RL/ANG £=0 (Continue analysis for
" - homework)

2
re o dr




®
Summary -- Solution of Euler’s equation for fluids

v ( ) Vx(va)zf L ——

—+V
ot . -
Consider the following restrictions:

1. (V X V) = () "irrotational tflow"
= v=—VO

2. £, .. =—VYU conservative applied force

3. p=(constant) 1ncompressible fluid

a(_v®)+V(%v2):—VU—E
Ot o,

:>V(p+U+ % —agjzo
Jo, Ot



Presenter Notes
Presentation Notes
Consider a more complicated situation where there is a pressure gradient and applied potential.    Specializing to the case of irrotational flow and arriving at the Bernoulli equation.


For incompressible fluid

Bernoulli’'s integral of Euler’s equation for constant p

% p+U+1v2—a£ =0

0 ot
Integrating over space:

LiU+ly —%E—C()

P
where  v=-VO(r,t) =-V(D(r,1) + C(1))

A
It is convenient to modify ®(r,) - ®(r, )+ [ C(¢")dt’

— — P +U +1 v —63 =( Bernoulli's theorem

yo, ot



Extension of these ideas to some compressible
fluids — now assuming conditions of constant
entropy (no heat transfer).

Under what circumstances can there be no heat
transfer?



Solution of Euler’s equation for fluids -- isentropic

%+V(§v2)—vx(va)=f oy ——
Consider the following restrictions:

1. (V X V) = () "irrotational tflow"
= v=—VO

2. £, .. =—VYU conservative applied force

3. p#(constant) 1sentropic fluid Comment about

A little thermodynamics sign convention
-

First law of thermodynamics: dE. =dQO —dW
For 1sentropic conditions: dQ =0

dE. =—dW =—-pdV


Presenter Notes
Presentation Notes
Now consider generalizing this result to a possibly compressible fluid under the  condition of zero heat transfer (isentropic).


“Solution of Euler’s equation for fluids — isentropic (continued)
dE._ =—dW =—pdV

In terms of mass density: p = %
. M
For fixed M and variable V: dp = _Fd V
M
dV = ——de
o,

In terms 1n intensive variables: Let £ =M¢

dE. =Mdg =—dW =—pdV = M%dp

dgz%dp (@—gj :%
0P iy P


Presenter Notes
Presentation Notes
Here we need to introduce the so called first law of thermodynamics.   This condition finds a general expression for ratio of the pressure and density in terms of the density derivative of the internal energy density.


“Solution of Euler’s equation for fluids — isentropic (continued)

(@_8) _p
P gy P

Consider: Vg :tﬁ—gj Vp =£2Vp
P ) oo P
Rearranging : V(g + Ej — vp
P P

Is this useful?
a. Yes
b. No


Presenter Notes
Presentation Notes
This can be rearranged in terms of the gradient of the pressure divided by the density.


“Solution of Euler’s equation for fluids — isentropic (continued)

ov Vp

E‘FV( ) VX(VXV):fapplied_7
vr =V (5 + Ej

P P
Now suppose we have the additional conditions:
Vxv=0 vV=-VO apiica = VU
-V
oV )+v(; 1 )=-VU - V(g+ pj
ot o,

:>V(g+p+U+ % —ai)j:o

Jo, ot


Presenter Notes
Presentation Notes
Finally we arrive at a Bernoulli relation for irrotational flow of an isentropic material.


Summary of Bernoulli’s results for irrotational fluids

For incompressible fluid

V[£+U+ V —@]:O
Jo, ot

For isentropic fluid with internal energy density ¢

V(5+p+U+ % —@J—O
o, ot

Here ¢ is the internal energy of the fluid per unit mass. For an
ideal gas fluid, it has a relatively simple form.


Presenter Notes
Presentation Notes
Summary of results   ---


®
For isentropic fluid with internal energy density ¢

V(g+p+U+ 1% —@]—O

o, ot

Here ¢ is the internal energy of the fluid per unit mass. In
order to continue, we need to know the form of

£(p,s)

Where s denotes entropy per unit mass.


Presenter Notes
Presentation Notes
Summary of results   ---


.

Example — ideal gas fluid

Equation of state for ideal gas:

pV = NkT Nzﬂ
MO
V M, M,

k=138x10%J/K

M, = average mass of each molecule


Presenter Notes
Presentation Notes
Estimating the  wave velocity for air assuming that it is an ideal gas.


Internal energy for 1deal gas: 1in terms of /

(degrees of freedom)

E=L NkT = Me god K p_JP
2 2 M, C2p

In terms of specific heatratio: y = C_p
)

dE = dQ —dw

)
" \ar), \or), 2 M,



Presenter Notes
Presentation Notes
Using the ideal gas law with f representing the degrees of freedom.       It is convenient to replace the f with the gamma factor which can be measured experimentally.


Digression
Internal energy for 1deal gas: f ="degrees of freedom"

2 2 M, 2 p
LA S Py v/ S S S
2 y-1 y—1 y—1M, y—1p
f Y
Spherical atom 3 1.66667
Diatomic molecule S 1.40000
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@Internal energy for ideal gas :

Fe ' NiT=Me s K p_ 1 P

y—1 y=1M, y-1lp

Internal energy for ideal gas under 1sentropic conditions:

d8=—£dV:£2dp 9¢ :p2:5 L p
M p op), P op\yr-lp)

o -5
p> \op) (r-1)p (r-1)p’ op), P

Next time, we will use these results to analyze the motion of
an isentropic and irrotational ideal gas.

V(5+£+U+%v2 —82) =0
Jo, ot



Presenter Notes
Presentation Notes
Using the ideal gas law under isentropic conditions 
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