
10/30/2024 PHY 711  Fall 2024 -- Lecture 28 1

PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin 103

Notes on Lecture 28 -- Chap. 9 in F & W

Introduction to hydrodynamics 
1. Newton’s laws for fluids and the continuity equation

2. Irrotational and incompressible fluids

3. Irrotational and isentropic fluids

4. Approximate solutions in the linear limit – next time

Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of hydrodynamics which is presented in Chapter 9 of your textbook.
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4 PM

Olin 101
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Presenter Notes
Presentation Notes
Homework 18 is due Friday.
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Newton’s equations for fluids
 Use Euler formulation; properties described in terms of 
                                       stationary spatial grid

(x,y,z,t)
p(x,y,z,t)
(x,y,z,t) 

v  Velocity                        
    Pressure                       
 Density         :Variables ρ

t

t’

ttt
ttt

tt

δ
δ
+=

+
'                          

',   :'at  Particle
,   :at  Particle

vr
r

Presenter Notes
Presentation Notes
Resuming our discussion of Newton’s equations for fluids.    For reference, this approach is named for Euler and is based on the continuous fluid being represented within an infinitesimal volume.
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Euler analysis -- continued
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Presenter Notes
Presentation Notes
While the infinitesimal volume moves from t to t’, the spatial position moves from r to r+v dt



10/30/2024 PHY 711  Fall 2024 -- Lecture 28 7

( )

( )

( )

( )

( )

( ) ( )

For       

For       

For       

In vector form 

ˆ ˆ ˆNote that 

x x
x x

y y
y

z
z

x z x y

y

z
z

y z

df f f
dt t

dv vf v v
dt t
dv v

f v v
dt t

dv vf v v
dt t
d
dt t

v v v v v v
x y z

∂
= + ⋅∇
∂

∂
→ = + ⋅∇

∂
∂

→ = + ⋅∇
∂
∂

→ = + ⋅∇
∂
∂

= + ⋅∇
∂
 ∂ ∂ ∂

⋅∇ = + + + + ∂ ∂ ∂ 

v

v

v

v

v v v v

v v x y z



10/30/2024 PHY 711  Fall 2024 -- Lecture 28 8

( )

( )

( ) ( )

( )2

, , ,

In vector form 
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( )

p
dt
d

dVpdV
dt
ddV

m

applied

applied

pressureapplied

∇−=

∇−=

+=

fv

fv
FFa

ρρ

ρρ

For example,   applying this analysis to 
Newton’s equation of motion for fluids:
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Continuity equation:
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The notion of the continuity is a common feature of continuous 
closed systems.  Here we assume that there are no 
mechanisms for creation or destruction of the fluid.
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Continuity equation:

0

0

For incompressible fluid:   constant
0

Irrotational flow:    0                  
For irrotational flow of an incompressible fluid:     
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Presenter Notes
Presentation Notes
Another aspect of the fluid is the continuity equation.    This simplifies to a velocity field which has zero divergence.For irrotational flow the velocity field has zero curl and therefore can be written in terms of the velocity potential.   Irrotational flow of an incompressible fluid satisfies the Laplace equation.
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Checking --
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Example of irrotational flow of an incompressible 
fluid – uniform flow
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Presenter Notes
Presentation Notes
Consider an example of irrotational flow of an incompressible fluid.    In this case the fluid is flowing uniformly along the z axis.
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Example – flow around a long cylinder (oriented in 
the  Y   direction)

v0 Ẑ v0 Ẑ
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Presenter Notes
Presentation Notes
Now imagine the there is a log  that distorts the flow.    Here the long axis of the log is in the direction perpendicular to the screen.    At the boundary of the log, the radial velocity is 0.
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Presenter Notes
Presentation Notes
Setting up and solving the boundary value problem.
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Presenter Notes
Presentation Notes
Some details.
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Presenter Notes
Presentation Notes
Full solution and simplified behavior far from the log.
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2
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2 2 2 2 2

For 3-dimensional system, consider a spherical  obstruction
Laplacian in spherical polar coordinates:

1 1 10 sin
sin sin

r
r r r r r
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θ θ θ θ ϕ

∂ ∂Φ ∂ ∂Φ ∂ Φ   ∇ Φ = = + +   ∂ ∂ ∂ ∂ ∂   

Now consider the case of your homework problem --
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Laplacian in spherical polar coordinates:
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Summary  --   Solution of Euler’s equation for fluids
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Presenter Notes
Presentation Notes
Consider a more complicated situation where there is a pressure gradient and applied potential.    Specializing to the case of irrotational flow and arriving at the Bernoulli equation.
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Bernoulli’s integral of Euler’s equation for constant ρ
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Extension of these ideas to some compressible 
fluids – now assuming  conditions of  constant 
entropy (no heat transfer).

Under what circumstances can there be no heat 
transfer?
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Solution of Euler’s equation for fluids -- isentropic
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Consider the following restrictions:
1.    0      "irrotational flow"
           
2.       conservative applied force
3.    (constant)      isentropic fluid
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A little thermodynamics
First law of thermodynamics:    
For isentropic conditions:   0

dE dQ dW
dQ

dE dW pdV

= −
=

= − = −

Comment about 
sign convention

Presenter Notes
Presentation Notes
Now consider generalizing this result to a possibly compressible fluid under the  condition of zero heat transfer (isentropic).
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In terms of mass density:   
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Solution of Euler’s equation for fluids – isentropic (continued)
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Presenter Notes
Presentation Notes
Here we need to introduce the so called first law of thermodynamics.   This condition finds a general expression for ratio of the pressure and density in terms of the density derivative of the internal energy density.
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Solution of Euler’s equation for fluids – isentropic (continued)

ρρ
ε

ρ
ρ

ρ
ρ
εε

ρρ
ε

pp

p

p

dQ

dQ

∇
=








+∇

∇=∇







∂
∂

=∇

=







∂
∂

=

=

       :gRearrangin

     :Consider 2
0

2
0

Is this useful?
    a.  Yes
    b.   No

Presenter Notes
Presentation Notes
This can be rearranged in terms of the gradient of the pressure divided by the density.
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Solution of Euler’s equation for fluids – isentropic (continued)

Now suppose we have the additional conditions:
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Presenter Notes
Presentation Notes
Finally we arrive at a Bernoulli relation for irrotational flow of an isentropic material.
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Summary of Bernoulli’s results for irrotational fluids
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Here ε is the internal energy of the fluid  per unit mass. For an 
ideal gas fluid, it has a relatively simple form.  

Presenter Notes
Presentation Notes
Summary of results   ---
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For isentropic fluid with internal energy density ε

Here ε is the internal energy of the fluid  per unit mass.   In 
order to continue, we need to know the form of 

( , )sε ρ

Where s denotes entropy per unit mass.

Presenter Notes
Presentation Notes
Summary of results   ---
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0

0 0
23

0

Equation of state for ideal gas:

                    

1.38 10 /
 average mass of each molecule
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= =

= =

= ×
=

Example – ideal gas fluid

Presenter Notes
Presentation Notes
Estimating the  wave velocity for air assuming that it is an ideal gas.
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0

Internal energy for ideal gas:    in terms of  
    (degrees of freedom)
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Presenter Notes
Presentation Notes
Using the ideal gas law with f representing the degrees of freedom.       It is convenient to replace the f with the gamma factor which can be measured experimentally.
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Digression

0

0

Internal energy for ideal gas:     "degrees of freedom"
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1 1 1 1            
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M
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γ γ γ M γ

ε ε
ρ

ε
ρ

≡

= = = =

= ⇒ = = =
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f γ
Spherical atom 3 1.66667
Diatomic molecule 5 1.40000
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Internal energy for ideal gas under isentropic conditions:
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= − ⇒ =   ∂ − − ∂   

Next time, we will use these results to analyze the motion of 
an isentropic and irrotational ideal gas.
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Presenter Notes
Presentation Notes
Using the ideal gas law under isentropic conditions 
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