

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes for Lecture 29 -- Chap. 9 in F & W More hydrodynamics

- 1. Newton's laws for fluids and the continuity equation
- 2. Approximate solutions in the linear limit
- 3. Linear sound waves

V.——				
	Fri, 10/18/2024	Fall Break		
24	Mon, 10/21/2024	Chap. 7	Laplace transforms and complex functions	<u>#17</u>
25	Wed, 10/23/2024	Chap. 7	Complex integration	<u>#18</u>
26	Fri, 10/25/2024	Chap. 8	Wave motion in 2 dimensional membranes	<u>#19</u>
27	Mon, 10/28/2024	Chap. 9	Motion in 3 dimensional ideal fluids	<u>#20</u>
28	Wed, 10/30/2024	Chap. 9	Motion in 3 dimensional ideal fluids	<u>#21</u>
29	Fri, 11/01/2024	Chap. 9	Ideal gas fluids	<u>#22</u>
30	Mon, 11/04/2024	Chap. 9	Traveling and standing waves in the linear approximation	
31	Wed, 11/06/2024	Chap. 9	Non-linear and other wave properties	

PHY 711 -- Assignment #22

Assigned: 11/01/2024 Due: 11/04/2024

Continue reading Chapter 9 in Fetter & Walecka.

- 1. Estimate the speed of sound for the following ideal gas materials at a pressure of p = 101325 Pa and temperature T = 274 K:
- 2. ρ = 1.29 kg/m³ (approximating dry air)
- 3. ρ = 0.18 kg/m³ (approximating He gas)

Recall the basic equations of hydrodynamics

Basic variables: Density $\rho(\mathbf{r},t)$

Velocity $\mathbf{v}(\mathbf{r},t)$

Pressure $p(\mathbf{r},t)$ Newton-Euler equation of motion:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$

Continuity equation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

+ relationships among the variables due to principles of thermodynamics due to the particular fluid (In fact, we will focus on an ideal gas.) Solution of Euler's equation for fluids -- isentropic

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2} v^2\right) - \mathbf{v} \times (\nabla \times \mathbf{v}) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$

Additional relationships among the variables apply, depending on the fluid material and on thermodynamics

At the moment we are interested in the case where there is no heat exchange.

A little thermodynamics

First law of thermodynamics: $dE_{int} = dQ - dW$

For isentropic conditions: dQ = 0

$$dE_{\rm int} = -dW = -pdV$$
 Here $W == {\rm work}$ $V == {\rm volume}$

Solution of Euler's equation for fluids – isentropic (continued)

$$dE_{\rm int} = -dW = -pdV$$

In terms of mass density: $\rho = \frac{M}{V}$

For fixed M and variable V: $d\rho = -\frac{M}{V^2}dV$

$$dV = -\frac{M}{\rho^2}d\rho$$

 $dV = -\frac{M}{\rho^2} d\rho$ Internal energy per unit

$$dE_{\text{int}} = Md\varepsilon = -dW = -pdV = M\frac{p}{\rho^2}d\rho$$

$$d\varepsilon = \frac{p}{\rho^2} d\rho \qquad \left(\frac{\partial \varepsilon}{\partial \rho}\right)_{dQ=0} = \frac{p}{\rho^2}$$

Internal

mass

Solution of Euler's equation for fluids – isentropic (continued)

$$\left(\frac{\partial \varepsilon}{\partial \rho}\right)_{dO=0} = \frac{p}{\rho^2}$$

Note: Under conditions of constant $\left(\frac{\partial \mathcal{E}}{\partial \rho}\right)_{1000} = \frac{p}{\rho^2}$ entropy, we assume e can be expressed in terms of the density alone.

Consider:
$$\nabla \varepsilon = \left(\frac{\partial \varepsilon}{\partial \rho}\right)_{dQ=0} \nabla \rho = \frac{p}{\rho^2} \nabla \rho$$

Rearranging:
$$\nabla \left(\varepsilon + \frac{p}{\rho}\right) = \frac{\nabla p}{\rho}$$

Note that here we are assuming that we can write ε as $\varepsilon(\rho,s)$.

Solution of Euler's equation for fluids – isentropic (continued)

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2}v^2\right) - \mathbf{v} \times (\nabla \times \mathbf{v}) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$

$$\frac{\nabla p}{\rho} = \nabla \left(\varepsilon + \frac{p}{\rho} \right)$$

if
$$\nabla \times \mathbf{v} = 0$$

$$\rightarrow$$
 $\mathbf{v} = -\nabla \Phi$

$$\mathbf{f}_{applied} = -\nabla U$$

$$\frac{\partial \left(-\nabla \Phi\right)}{\partial t} + \nabla \left(\frac{1}{2}v^{2}\right) = -\nabla U - \nabla \left(\varepsilon + \frac{p}{\rho}\right)$$

$$\Rightarrow \nabla \left(\varepsilon + \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t} \right) = 0$$

For isentropic and irrotational fluid.

Some details --

$$(\nabla \times \mathbf{v}) = 0$$
 "irrotational flow" $\Rightarrow \mathbf{v} = -\nabla \Phi$

Check:
$$(\nabla \times \mathbf{v}) = -(\nabla \times \nabla \Phi) = ?$$

$$\left(\nabla \times \nabla \Phi\right)\Big|_{x} = \frac{\partial^{2} \Phi}{\partial y \partial z} - \frac{\partial^{2} \Phi}{\partial z \partial x}$$

Summary: For isentropic and irrotational fluid with internal energy per unit mass ε:

$$\nabla \left(\varepsilon + \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t} \right) = 0$$

Here ϵ is the internal energy of the fluid per unit mass. For an ideal gas fluid, it has a relatively simple form.

Up to now, the assumptions on the fluid are

- 1. Irrotational flow
- 2. Isentropic (adiabatic or no heat exchange)

$$\nabla \left(\varepsilon + \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t} \right) = 0$$

What is $\varepsilon(\rho,s)$?

Internal energy for ideal gas under isentropic conditions:

$$d\varepsilon = -\frac{p}{M}dV = \frac{p}{\rho^2}d\rho$$
 (from 1st "law" of thermo)

Internal energy for ideal gas:

$$E = \frac{1}{\gamma - 1} NkT = M\varepsilon \qquad \varepsilon = \frac{1}{\gamma - 1} \frac{k}{M_0} T = \frac{1}{\gamma - 1} \frac{p}{\rho}$$

Internal energy for ideal gas under isentropic conditions:

$$d\varepsilon = -\frac{p}{M}dV = \frac{p}{\rho^2}d\rho$$

$$\left(\frac{\partial \varepsilon}{\partial \rho}\right)_s = \frac{p}{\rho^2} = \frac{\partial}{\partial \rho} \left(\frac{1}{\gamma - 1} \frac{p}{\rho}\right)_s = \left(\frac{\partial p}{\partial \rho}\right)_s \frac{1}{(\gamma - 1)\rho} - \frac{p}{(\gamma - 1)\rho^2}$$

$$\Rightarrow \left(\frac{\partial p}{\partial \rho}\right)_s = \frac{p\gamma}{\rho}$$

For this case (adiabatic ideal gas), we can determine the relationship between p and ρ :

$$\frac{dp}{p} = \gamma \frac{d\rho}{\rho} \qquad \Rightarrow d \ln p = d \ln \rho^{\gamma} \qquad \Rightarrow p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

Some details -- Ideal gas law -- $pV = NkT = \frac{M}{M_0}kT$ $\rho = \frac{M}{V}$

Internal energy for ideal gas:

$$E = \frac{f}{2} NkT = M\varepsilon \qquad \varepsilon = \frac{f}{2} \frac{k}{M_0} T = \frac{f}{2} \frac{p}{\rho}$$

In terms of specific heat ratio: $\gamma = \frac{C_p}{C_V}$

$$dE = dQ - dW$$

$$C_V = \left(\frac{dQ}{dT}\right)_V = \left(\frac{\partial E}{\partial T}\right)_V = \frac{f}{2}\frac{Mk}{M_0}$$

$$C_{p} = \left(\frac{dQ}{dT}\right)_{p} = \left(\frac{\partial E}{\partial T}\right)_{p} + p\left(\frac{\partial V}{\partial T}\right)_{p} = \frac{f}{2}\frac{Mk}{M_{0}} + \frac{Mk}{M_{0}}$$

$$\frac{C_p}{C_V} \equiv \gamma = \frac{\frac{f}{2} + 1}{\frac{f}{2}} \qquad \Rightarrow \frac{f}{2} = \frac{1}{\gamma - 1}$$

Digression

Internal energy for ideal gas: $f \equiv$ "degrees of freedom"

$$E = \frac{f}{2} NkT = M \varepsilon \qquad \varepsilon = \frac{f}{2} \frac{k}{M_0} T = \frac{f}{2} \frac{p}{\rho}$$

$$\frac{f}{2} = \frac{1}{\gamma - 1} \implies E = \frac{1}{\gamma - 1} NkT \qquad \varepsilon = \frac{1}{\gamma - 1} \frac{k}{M_0} T = \frac{1}{\gamma - 1} \frac{p}{\rho}$$

	f	γ
Spherical atom	3	1.66667
Diatomic molecule	5	1.40000

Tables of specific hear ratios –

https://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_159.html

	Formula≑	Specific Heat Ratio \$	
Gas or Vapor \$		$\kappa = c_p / c_V$ \Leftrightarrow	
Acetone	(CH ₃) ₂ CO	1.11	
Acetylene	C ₂ H ₂	1.232	
Air		1.40	
Alcohol (ethanol)	C ₂ H ₅ OH	1.13	
Alcohol (methanol)	CH ₃ OH	1.26	
Ammonia	NH ₃	1.31	
Argon	Ar	1.667	
Benzene	C ₆ H ₆	1.12	
Blast furnace gas		1.41	
Bromine	Br ₂	1.28	
Butane	C ₄ H ₁₀	1.094	
Carbon dioxide	CO ₂	1.289	
Carbon monoxide	СО	1.40	
Carbon disulphide	CS ₂	1.21	

Back to analyzing the fluid mechanics equations

$$\nabla \left(\varepsilon + \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t} \right) = 0 \qquad \text{For isentropic and irrotational fluid.}$$

Internal energy for ideal gas:

$$E = \frac{1}{\gamma - 1} NkT = M\varepsilon \qquad \varepsilon = \frac{1}{\gamma - 1} \frac{k}{M_0} T = \frac{1}{\gamma - 1} \frac{p}{\rho}$$

$$\nabla \left(\frac{1}{\gamma - 1} \frac{p}{\rho} + \frac{p}{\rho} + U + \frac{1}{2} v^2 - \frac{\partial \Phi}{\partial t} \right) = 0$$

Also need to include continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Now consider the fluid to be air near equilibrium

Near equilibrium:

$$\rho = \rho_0 + \delta \rho$$

$$p = p_0 + \delta p$$

$$\mathbf{v} = 0 + \delta \mathbf{v} = -\nabla \delta \Phi$$

 ρ_0 represents the average air density

 p_0 represents the average air pressure

(usually ≈ 1 atmosphere)

 $\mathbf{v}_0 = 0$ average velocity

$$\mathbf{f}_{applied} = 0$$

$$\nabla \left(\frac{1}{\gamma - 1} \frac{p}{\rho} + \frac{p}{\rho} + \frac{p}{\rho} + \frac{p}{\rho} \right) = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Linearized equations near equilibrium

$$\left(\frac{1}{\gamma - 1} + 1\right) \left(\nabla \left(\frac{p}{\rho}\right)\right) + \frac{\partial \delta \mathbf{v}}{\partial t} = 0 \quad \triangleright \quad \left(\frac{\gamma}{\gamma - 1}\right) \left(\nabla \left(\frac{p}{\rho}\right)\right) + \frac{\partial \delta \mathbf{v}}{\partial t} = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Further relationships for isentropic ideal gas

$$p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma} \qquad \qquad \frac{\gamma}{\gamma - 1} \nabla \left(\frac{p}{\rho}\right) = \frac{\gamma}{\gamma - 1} \frac{p_0}{\rho_0^{\gamma}} (\gamma - 1) \rho^{\gamma - 2} \nabla \rho$$

Complete linearization

$$= \frac{\gamma p_0}{\rho_0^{\gamma}} \rho^{\gamma-2} \nabla \rho$$

$$\frac{\gamma p_0}{\rho_0^2} \nabla \delta \rho + \frac{\partial \delta \mathbf{v}}{\partial t} = 0 \qquad \frac{\partial \delta \rho}{\partial t} + \rho_0 \nabla \cdot (\delta \mathbf{v}) = 0$$

Decoupling linearized equations --

$$\frac{\gamma p_0}{\rho_0^2} \nabla \delta \rho + \frac{\partial \delta \mathbf{v}}{\partial t} = 0$$

$$\frac{\gamma p_0}{\rho_0^2} \nabla \delta \rho + \frac{\partial \delta \mathbf{v}}{\partial t} = 0 \qquad \frac{\partial \delta \rho}{\partial t} + \rho_0 \nabla \cdot (\delta \mathbf{v}) = 0$$

$$\frac{\gamma p_0}{\rho_0} \nabla^2 \delta \rho - \frac{\partial^2 \delta \rho}{\partial t^2} = 0 \qquad \delta \mathbf{v} = -\nabla \Phi$$

$$\delta \mathbf{v} = -\nabla \Phi$$

$$\nabla \left(\frac{\gamma p_0}{\rho_0^2} \delta \rho - \frac{\partial \Phi}{\partial t} \right) = 0$$

$$\Rightarrow \frac{\gamma p_0}{\rho_0^2} \delta \rho - \frac{\partial \Phi}{\partial t} = \text{constant}$$

$$\Rightarrow \frac{\gamma p_0}{\rho_0^2} \frac{\partial \delta \rho}{\partial t} - \frac{\partial^2 \Phi}{\partial t^2} = 0$$

$$\frac{\gamma p_0}{\rho_0} \nabla^2 \Phi - \frac{\partial^2 \Phi}{\partial t^2} = 0$$

Have we seen these equations before?

$$\frac{\gamma p_0}{\rho_0} \nabla^2 \delta \rho - \frac{\partial^2 \delta \rho}{\partial t^2} = 0$$

$$\frac{\gamma p_0}{\rho_0} \nabla^2 \Phi - \frac{\partial^2 \Phi}{\partial t^2} = 0$$

It is also possible to show that

$$\frac{\gamma p_0}{\rho_0} \nabla^2 \delta p - \frac{\partial^2 \delta p}{\partial t^2} = 0$$

For an ideal gas under isentropic conditions with irrotational flow, close to equilibrium, the linear fluctuations in density, pressure, and velocity are characterized by a wave equation with velocity

$$c_0^2 \equiv \frac{\gamma p_0}{\rho_0}.$$

More general case -- Isentropic or adiabatic equation of state:

$$\frac{dp}{p} = \gamma \frac{d\rho}{\rho} \qquad \Rightarrow \frac{p}{p_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

Note that, next time, we will consider the more general case to find a density dependent of speed of sound for ideal gas:

$$c^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{s} = \frac{\gamma p}{\rho} \quad \text{for} \quad \frac{p}{p_{0}} = \left(\frac{\rho}{\rho_{0}}\right)^{\gamma}$$

$$c^{2} = \frac{p_{0}\gamma}{\rho_{0}} \frac{p/p_{0}}{\rho/\rho_{0}} = c_{0}^{2} \left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1} \quad \text{for } c_{0}^{2} \equiv \frac{p_{0}\gamma}{\rho_{0}}$$

Summary of linearized hydrodynamic equations for isentropic fluid

In terms of the velocity potential:

$$\frac{\partial \mathbf{v} = -\nabla \Phi}{\partial t^2} - c_0^2 \nabla^2 \Phi = 0 \qquad c_0^2 = \left(\frac{\partial p}{\partial \rho}\right)_{s,\rho_0}$$

In term of density fluctuation:
$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_0^2 \nabla^2 \delta \rho = 0$$
In term of pressure fluctuation:
$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_0^2 \nabla^2 \delta \rho = 0$$

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_0^2 \nabla^2 \delta \rho = 0$$

$$\frac{\partial^2 \delta p}{\partial t^2} - c_0^2 \nabla^2 \delta p = 0$$

Linearized wave equation for adiabatic ideal gas:

$$\frac{\partial^2 \Phi}{\partial t^2} - c_0^2 \nabla^2 \Phi = 0$$

Here,
$$c_0^2 = \left(\frac{\partial p}{\partial \rho}\right)_s$$

$$\mathbf{v} = -\nabla \Phi$$

Note that, we also have:

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_0^2 \nabla^2 \delta \rho = 0$$
$$\frac{\partial^2 \delta p}{\partial t^2} - c_0^2 \nabla^2 \delta p = 0$$

$$\frac{\partial^2 \delta p}{\partial t^2} - c_0^2 \nabla^2 \delta p = 0$$

Boundary values:

Impenetrable surface with normal $\hat{\bf n}$ moving at velocity ${\bf V}$:

$$\hat{\mathbf{n}} \cdot \mathbf{V} = \hat{\mathbf{n}} \cdot \delta \mathbf{v} = -\hat{\mathbf{n}} \cdot \nabla \Phi$$

Free surface:

$$\delta p = 0 \qquad \Rightarrow \rho_0 \frac{\partial \Phi}{\partial t} = 0$$

Boundary values of wave equation

Impenetrable surface with normal $\hat{\mathbf{n}}$ moving at velocity \mathbf{V} :

$$\hat{\mathbf{n}} \cdot \mathbf{V} = \hat{\mathbf{n}} \cdot \delta \mathbf{v} = -\hat{\mathbf{n}} \cdot \nabla \Phi$$

Free surface:

$$\delta p = 0 \qquad \Rightarrow \rho_0 \frac{\partial \Phi}{\partial t} = 0$$

Time harmonic standing waves in a pipe

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \nabla^2 \Phi = 0$$

Boundary values:

At fixed surface: $\hat{\mathbf{n}} \cdot \nabla \Phi = 0$

At free surface: $\frac{\partial \Phi}{\partial t} = 0$