
11/1/2024 PHY 711  Fall 2024-- Lecture 29 1

PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF  in Olin 103

Notes for Lecture 29 -- Chap. 9 in F & W

More hydrodynamics 
1. Newton’s laws for fluids and the continuity 

equation

2. Approximate solutions in the linear limit

3. Linear sound waves

Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of hydrodynamics which is presented in Chapter 9 of your textbook.   The focus will be on treating the equations in the linear regime.
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Presenter Notes
Presentation Notes
Updated schedule
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Recall the basic equations of hydrodynamics
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Newton-Euler equation of motion:

                                     

Continuity equation:    0

applied
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ρ
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∂
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( , )
                             Velocity  ( , ) 
                              Pressure ( , )

Basic variables:    Density   t
t

p t

ρ r
v r

r

+ relationships among the variables due to principles of 
thermodynamics due to the particular fluid   (In fact, we 
will focus on an ideal gas.)

Presenter Notes
Presentation Notes
Review of the basic equations of hydrodynamics.
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Solution of Euler’s equation for fluids -- isentropic
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ρ
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A little thermodynamics
First law of thermodynamics:    
For isentropic conditions:   0

dE dQ dW
dQ

dE dW pdV

= −
=

= − = −

Additional relationships  among the variables apply, 
depending on the fluid material and on thermodynamics

At the moment we are interested in the case where there 
is no heat exchange.

Here W == work
          V == volume
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int

2

2

In terms of mass density:   

For fixed  and variable :    

                                                

dE dW pdV
M
V

MM V d dV
V
MdV d

ρ

ρ

ρ
ρ

= − = −

=

= −

= −

Solution of Euler’s equation for fluids – isentropic (continued)

int

int 2

2 2
0

In terms in intensive variables:    Let  

            
dQ

E M
pdE Md dW pdV M d

p pd d

ε

ε ρ
ρ

εε ρ
ρ ρ ρ=

=

= = − = − =

 ∂
= = ∂ 

Internal 
energy 
per unit 
mass
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Solution of Euler’s equation for fluids – isentropic (continued)
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     :Consider 2
0
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0

Note:  Under conditions of constant 
entropy, we assume e can be expressed 
in terms of the density alone.

Note that here we are assuming that we can 
write ε as ε(ρ,s).
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Solution of Euler’s equation for fluids – isentropic (continued)
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For isentropic and 
irrotational fluid.
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Summary:   For isentropic and irrotational fluid with internal 
energy per unit mass  ε:

Here ε is the internal energy of the fluid  per unit mass. For an 
ideal gas fluid, it has a relatively simple form.  

( )
( ) ( )

( )
2 2

Some details --
  0      "irrotational flow"           

Check:   ?

x y z z x
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∇

∂ ∂
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v v
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Up to now, the assumptions on the fluid are
      1.   Irrotational flow
      2.   Isentropic (adiabatic or no heat exchange)
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γ
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M
kMNkTE
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1

1
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1
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:gas idealfor energy  Internal

0 −
=

−
==

−
=

2

Internal energy for ideal gas under isentropic conditions:
p pd dV d

M
ε ρ

ρ
= − = (from 1st “law”  of thermo)
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Internal energy for ideal gas under isentropic conditions:

1 1
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For this case (adiabatic ideal gas), we can determine th
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Presenter Notes
Presentation Notes
Using the ideal gas law under isentropic conditions to derive the speed of sound.
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In terms of specific heat ratio:    
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Some details --
0

Ideal gas law --     M MpV NkT kT
M V

ρ == =

Presenter Notes
Presentation Notes
Using the ideal gas law with f representing the degrees of freedom.       It is convenient to replace the f with the gamma factor which can be measured experimentally.
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Digression

0

0

Internal energy for ideal gas:     "degrees of freedom"

        
2 2 2

1 1 1 1            
2 1 1 1 1

f
f f k f pE NkT M T

M
f k pE NkT T

γ γ γ M γ

ε ε
ρ

ε
ρ

≡

= = = =

= ⇒ = = =
− − − −

f γ
Spherical atom 3 1.66667
Diatomic molecule 5 1.40000
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Tables of specific hear ratios –
https://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_159.html

https://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_159.html
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Back to analyzing the fluid mechanics equations

21
2 0p U v

t
ε

ρ
 ∂Φ

∇ + + + − = ∂ 
For isentropic and 
irrotational fluid.

0

Internal energy for ideal gas:
1 1 1        

1 1 1
k pE NkT M T
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ε ε
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p p U v
tγ ρ ρ
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( )

Also need to include continuity equation:

0   
t
ρ ρ∂
+∇⋅ =

∂
v
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0

0

Near equilibrium:

0
0applied

p p p
δ

ρ ρ δρ
δ

δ

= +
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=

Φ
= +

+ = −v v
f

Now consider the fluid to be air near equilibrium

0

0

0

 represents the average air density
 represents the average air pressure

       (usually  1 atmosphere)
0 average velocity

p
ρ

≈
=v

21
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1 0
1

p p U v
tγ ρ ρ

 ∂Φ
∇ + + + − = − ∂ 

( ) 0   
t
ρ ρ∂
+∇⋅ =

∂
v

=0     =0

Presenter Notes
Presentation Notes
Now consider air as the fluid near equilibrium with small fluctuations represented by the delta notation
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Linearized equations near equilibrium
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urther relationships for isentropic ideal gas
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Decoupling linearized equations --
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Have we seen these equations before?
2
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It is also possible to show that 
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0

For an ideal gas under isentropic conditions with
irrotational flow, close to equilibrium,  the linear
fluctuations in density, pressure, and velocity are
characterized by a wave equation with velocity

c2 0

0

.pγ
ρ

≡
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2

0 0

1
2 20 0

0
0 0 0

Note that, next time, we will consider the more general case
 to find a density dependent of speed of sound for ideal gas:

      for    

/   
/

s

p p pc
p

p p pc c

γ

γ

γ ρ
ρ ρ ρ

γ ρ
ρ ρ ρ ρ

−

  ∂
= = =   ∂   

 
= =  

 
2 0
0

0

for pc γ
ρ

≡

0 0

More general case --   Isentropic or adiabatic equation of state:

             dp d p
p p

γ
ρ ργ
ρ ρ

 
= ⇒ =  

 

Presenter Notes
Presentation Notes
Some details of the analysis reveal that beyond the linear approximation, the velocity of sound is highly non-linear.
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Summary of linearized hydrodynamic equations for isentropic 
fluid

In terms of the velocity potential:
δ = −∇Φv

0

2
2 2 2
0 02

,

0     
s

pc c
t ρρ

 ∂ Φ ∂
− ∇ Φ = =  ∂ ∂ 

2
2 2
02

2
2 2
02

In term of density fluctuation:     0

In term of pressure fluctuation:     0

c
t

p c p
t

δρ δρ

δ δ

∂
− ∇ =

∂
∂

− ∇ =
∂
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2
2 2
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Linearized wave equation for adiabatic ideal gas:

0

Here,   
s

c
t
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ρ

∂ Φ
− ∇ Φ =

∂
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=  ∂ 
= −∇Φv

0

Boundary values:
ˆImpenetrable surface with normal  moving at velocity :

ˆ ˆ ˆ                       
Free surface:

                   0        0    Φp
t

δ

δ ρ

⋅ = ⋅ = − ⋅∇Φ

∂
= ⇒ =

∂

n V
n V n v n

2
2 2
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2
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Note that, we also have:

0

0

c
t

p c p
t

δρ δρ

δ δ

∂
− ∇ =

∂
∂

− ∇ =
∂

Presenter Notes
Presentation Notes
Next time, we will consider wave solutions to the equations w/wo boundary values.
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Time harmonic standing waves in a pipe

L

a
022

2

2

=Φ∇−
∂
Φ∂ c
t
Boundary values:

ˆAt fixed surface:   0

At free surface:     0Φ
t

⋅∇Φ =
∂

=
∂

n

0

Boundary values of wave equation
ˆImpenetrable surface with normal  moving at velocity :

ˆ ˆ ˆ                       
Free surface:

                   0        0    Φp
t

δ

δ ρ

⋅ = ⋅ = − ⋅∇Φ

∂
= ⇒ =

∂
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n V n v n
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