PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in OIlin103

Lecture notes for Lecture 2
Chapter 3.17 of F&W

Introduction to the calculus of variations
1. Mathematical construction
2. Practical use

3. Examples
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Presenter Notes
Presentation Notes
The topic of “calculus of variation” is covered in Chapter 3, Section 17 of your textbook.     We will study the mathematical formalism first before showing how it is useful for studying mechanical systems.


Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Topic HW
Mon, 8/26/2024 Introduction and overview #1
- Wed, 8/28/2024 |Chap. 3(17) |Calculus of variation #2

Fri, 8/30/2024 |Chap. 3(17) |Calculus of variation
Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion

IEEIIIEN

PHY 711 -- Assignment #2

Assigned: 8/28/2024 Due: 9/2/2024
Start reading Chapter 3, especially Section 17, in Fetter & Walecka.

o Using calculus of variations, find the equation, y(x), of the shortest length "curve" which passes
through the points (x=0, y=0) and (x=2, y=4). What is the length of this "curve"?
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Presenter Notes
Presentation Notes
There is a short problem on this subject that will be due on Monday.


THURSDAY
4 PM

PHysics CoLLoQuIiuM

Aucusrt 29, 2024

Olin 101

Refreshments at 3:30 PM
Exploring Alternative Origins of Life with Genes and .
Proteins Designed De Novo Olin LObby

All life on Earth arose from common ancestry. And all living
systems contain similar genes,proteins, and metabolisms. Do
these commonalities among living systems exist because they
diverged from shared ancestry? Alternatively, if living systems
arose from different ancestry (or no ancestry), would they
contain different genes, proteins, and metabolisms? There are
two ways to address this question: (i) Find life on another
planet (different ancestry); or (ii) Create novel

biomolecules and metabolisms in the laboratory (no ancestry).
Our lab does not have the budget for the first option; we’ll
leave that to NASA. Instead, the Hecht Lab creates vast
collections of synthetic genes to encode novel (non-natural)
proteins. Many of these novel proteins fold into

stable 3-dimensional structures. Moreover, many of them bind
biologically relevant metals, metabolites, and cofactors. Most
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Your questions —
From Thomas — At the end of slide 22 | am confused why you set
dy/dx=K" and why that is a useful trick?

From Conall — Calculus of Variation- when trying to minimize
y(X), can we always utilize the Euler- Lagrange equation...or do
these only apply under specific conditions?

For a later lecture --

a. Holonomic Constraints vs non-holonomic constraints. ...holonomic
constraints are constraints of motion that can be expressed with an equation
that relates coordinates and time? Non-Holonomic constraints also affect
motion but are not as easily definable with math?

b. The book states " ...k equations that relate the coordinates and

possibly time.." When the author refers to coordinates, they are referring to
those that pertain to the position of the particles, correct? | guess | am a
little confused about the systems in question here.
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More questions —

From Julia —

My question is would the calculus of variations method still work for
the bead on a string example if there is friction? And what are some
real examples of when the calculus of variations method is used?
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The “calculus of variation” as a mathematical construction.

Today and Friday, we will focus on the idea and process,
before applying it to physical systems next week.



According wikipedia —
Joseph-Louis Lagrange (born
Giuseppe Luigi Lagrangia or
Giuseppe Ludovico De la
Grange Tournier; 25 January
1736 — 10 April 1813), also
reported as Giuseppe Luigi
Lagrange or Lagrangia, was
an Italian mathematician and
astronomer, later naturalized
French. He made significant
contributions to the fields of
analysis, number theory, and
both classical and celestial
mechanics.



According to Wikipedia —

Leonard Euler (April 7, 1707-September 18,
1783) Swiss mathematician, physicist,
astronomer, geographer, logician and
engineer who founded the studies of graph
theory and topology and made pioneering
and influential discoveries in many other
branches of mathematics such as analytic
number theory, complex analysis, and
infinitesimal calculus. He introduced much of
modern mathematical terminology and
notation, including the notion of a
mathematical function. He is also known for
his work in mechanics, fluid dynamics, optics,
astronomy and music theory.
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In Chapter 3, the notion of Lagrangian dynamics is developed;
reformulating Newton'’s laws in terms of minimization of related
functions. In preparation, we need to develop a mathematical

tool known as “the calculus of variation™.

Minimization of a simple function

local
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Presenter Notes
Presentation Notes
First we should review the notion of a minimum in a continuous function.     Here is a plot of V(x) showing two different minima at two different points x.


Minimization of a simple function
Given a function V' (x), find the value(s) of x

for which V' (x) 1s minimized (or maximized).
dV

dx

Necessary condition : 0

301
251
20
15
10

'V.T

o 1 2 3
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Presenter Notes
Presentation Notes
We see from this plot that a condition for a function to have a minimum at a point is that its derivative is zero at that point.      You see in this example another point where dV/dx, but there is not a minimum.      So we say the dV/dx is a necessary but not sufficient condition on having a minimum.


S
Functional minimization of an integral relationship

Consider a family of functions y(x), with fixed end points

Find the function y(x) which extremizes L ({ y(x), ﬂ} : xj.

Necessary condition: oL =0

1

Example: y 0'6::

1,1 1

L= j\/(dx)2+(dy)2 ole—"onrr— |

(0,0) 0 0.2 04 06 0.8
X


Presenter Notes
Presentation Notes
The calculus of variation also searches for minima, but instead of finding a point where a function has a minimum,  we search for a functional form that minimizes the numerical value of an integral.


Difference between minimization of a function V(x) and
the minimization in the calculus of variation.

Minimization of a function — V(x)
=2>Know V(x)  =>Find x, such that V(x,) is a minimum.

Calculus of variation

For x, < x < x, want to find a function y(x)

that minimizes an integral that depends on y(x).
The analysis involves deriving and solving a differential

equation for the function y(x).


Presenter Notes
Presentation Notes
Comparison 


8/28/2024

0 02 04 06 0.8
X

Sample functions:

1
v (x)=x L= j 1 +—dx =1.4789
0

4_
y,(x)=x L=j\/1+1dx=\/§=1.4142
0
1
yy(x) =x° L= j\/1+4x2dx —1.4789
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Presenter Notes
Presentation Notes
For this example, we can evaluate the distance along a curve between two points x=0,y=0 and x=1,y=1 as a normal integral over x as shown.


Calculus of variation example for a pure integral function

Find the function y(x) which extremizes L({ y(x), Z—y}, xj
X

where L({ y(x),%}, xj = JJ: f ({ y(x),%}, xjdx.

Necessary condition: oL =0

At any x, let y(x) = y(x)+ oy(x)

dy(x) _)dy(X) N 5dy(X)

dx dx dx

Formally :

(e of dy
5L_£ [ay)x,dy@+ La(dy/dx)jx,yg(dxj ax.

dx — -




Comment on partial derivatives -- function f(a,b)

gz lim(f(aera,b)—f(a,b)ng
oa  da>0 da oa|,
df =(zj da+(zj db
oa ), ob ),
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Comment about notation concerning functional dependence
and partial derivatives

Suppose x, y, z represent independent variables that determine a function f :
We write f(x, y,z). A partial derivative with respect to x implies that we

hold y, z fixed and infinitessimally change x

(zj 1 (f(HAx,y,Z)—f(x,y,z)j
1m

Ox Ax

Ax—0



After some derivations, we find

| 5%
dx

X,y

jx,y

A
-]

L/
oy

B
= | =
Y ). &

dx

Note that this is a
“total”’ derivative

8/28/2024

(o
_J (@jx

of

)x,dy v+ _[ G(dy / dx)
Cdl( o

o dx |\ O(dy/dx)

" dx

d

o

dx

*

(5(dy / dx)jx,y

=0 forallx, <x<x,

oydx=0 forallx, <x<x

J
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Presenter Notes
Presentation Notes
Using calculus to simplify the integral.


.

“Some” derivations --
Consider the term

Xy

I

Xj

=

xf

o

8(dy/a’x)

g

I

Xj

dy/ a’x)

K

If y(x) 1s a well-defined function, then o (

K

dy
dx

dy
dx

o

J
J

dx

g

dy/ dx)

dx -

i} .
dx = j

Xj

X,

o

g

d

dy/ dx)

*
&)1,
dx dx
d
—oy [dx
}xy dx d

o

_dx

g

dy/ dx)

X,y



Presenter Notes
Presentation Notes
Some details.


Note that the 6y notation is meant to imply a general

infinitessimal variation of the function y(x)
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Clarification -- what is the meaning of the following statement:

d
5( 4 j -4 sy
dx ) dx
Up to now, the operator o 1s not well defined and meant to represent
e : d
a general infinitessimal difference. Suppose that oy = d—y, where a
a

appears in the functional form somehow. For most functional forms

o) 2
d”y(x,a) _ d"y(x,a) . One can show this to be

that one can think of,

dxda dadx
2 2
the case even for y(x,a) = x* where d yxa)_ dyx.a) x*! (1 + aln(x)).
dxda dadx

(Note that here we are being imprecise wrt partial and total derivatives.)



“Some” derivations (continued)--

Xy

|

Xj

d

o

dx

|

g

o

dy/ dx)

8(dy/dx)

j ;

X,y

Y
y

Euler-Lagrange equation:

-

9
0y

]x,dy

d

o

d

A

_dx

g

d

dy/ dx)

of

XY

dx

d

|

of

G(dy/dx)

_dx

dx

g

dy/ dx)

)x,y

dx

g

=0 forallx, <x<x

dy | dx)

X,y

dx

) Oy ldx
X,y

dx

f



Clarfication — Why does this term go to zero?

td of d of
& (8(dy/dx)1y5y dx{@(dy/dx)lyay -

N>..<

Xf X
of ddl o
- Sy| - 5y id
(8(dy/dx)ly | dx((’i(dy/dx)ly .

tod of
= 0 - Sy d
I dx[@(dy/dx)ly s

Answer --

By construction oy(x,) =0y(x,)=0
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Recap <[ - 7

_(% o 4
oL = L@ij,dyéij (6(dy/dx)jx’y§(dxj i

dx _

X
:I (@j 4 ( g j oydx=0 forallx, <x<x,
L dx .y

Oy o(dy / dx)

dx — -]

= g _4 I =0 forallx, <x<x,
oy ).« dx|\0ldy/dx)),

" dx — -

Here we conclude that the integrand has to vanish at every
argument in order for the integral to be zero

a. Necessary?
b. Overkill?



Example: End points-- y(0)=0;y(l) =1

L

J ( jdx :f({y<x>,%},xj: \/1+(

|
(%j (a(dij;dx)jx’y =0

o d{ dy | dx ]o

x| \J1+(dy / dx)’
Solution:
( \
dy / dx — K ﬂ — Kv _ K
\/1+(dy/dx)2 dx - 1_ K2
. y

= y(x)=K'x+C P(x) = x


Presenter Notes
Presentation Notes
Your homework problem is very similar to this.      


Example: Lamp shade shape y(x)

A= 27zj JHC@ dx :f({ (x), Zi},szx\/l+(%jz

of) d of 0 y
oy ) o dx|\ody/dx))

dx - -

]—o
)2

o d xdy / dx
dx | 1+ (dy/ dx
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Presenter Notes
Presentation Notes
Here is another example of the use of calculus of variation.


( )

d xdy / dx _0

dx| 1+ (dy/ dx)
xdy / dx
JU+(dy ) dx)
dy 1

R

=K,

2
X X
= v(x)=K.—-K In|l —+ [——1
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Presenter Notes
Presentation Notes
After these steps, the solution is found up to some constants.


General form of solution --

X x?
x)=K,-K In| —+ —1
y(x)= {Kl K2 ]

Suppose K, =1 and K, = 2++/3

/2+\/§\

\x+\/x2—1)

1.2

1
0.8
0.6
0.4
0.2

0

)=In

0.5 1 15 2
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1.2
1 (2443 )
0.8 x)=In
0.6 \ X + \/x2 -1
0.4
0.2
0
0.5 1 15 2
X
; d
AzZﬁjx 1+ (yj dx =15.02014144
1 dx
(according to Maple)
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Presenter Notes
Presentation Notes
Evaluating results for particular boundary values.


.

Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

Consider all curves y(x)with »(0)=0and y(1)=1

that minimize the integral :

1 2
I = j @ —ay” |dx for constanta >0
\ \dx

Euler - Lagrange equation :
d’y

2

+ay=0

o sin(yax)
O Ginla)

dx



Presenter Notes
Presentation Notes
Another example.


.

Review: for f ({y(x),?/},x}
X

Yr
a necessary condition to extremize _[ f ({ y(x),?;},xjdx ;
| X

of d of | |
(f%ldy dx{[@(dy/dx)jxj (3 Euler-Lagrange equation

dx

Note that for f ({y(x),ﬂ},xj,

dx
I _(f\, (o 4 dy{@j
dx \dy )dx \o(dy/dx))dx dx \ ox

| d of dy_I_ of d dyJ{@j
dx\o(dy/dx)))dx \o(dy/dx))dx dx  \ ox

N d . of dy)_(of Alternate Euler-Lagrange
dx\”  ody/dx)dx) \ox equation
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Presenter Notes
Presentation Notes
Summary and extension.
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