PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 30 -- Chap. 9 of F&W

Wave equation for sound in linear
approximation

Wave equations for sound
Plane wave solutions

Standing wave solutions

O b =

Coupling of resonances to audible sound.
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Presenter Notes
Presentation Notes
In this lecture, we will consider some solutions to the linear sound wave equations.
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Fri, 10/18/2024 |Fall Break

24 Mon, 10/21/2024 |Chap. 7 Laplace transforms and complex functions #17
25 \Wed, 10/23/2024 |Chap. 7 Complex integration #18
26 Fri, 10/25/2024 |Chap. 8 Wave motion in 2 dimensional membranes #19
27 Mon, 10/28/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #20
28 \Wed, 10/30/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #21
29 |Fri, 11/01/2024 |Chap. 9 Ideal gas fluids #22
30 Mon, 11/04/2024 |Chap. 9 Traveling and standing waves in the linear approximation |#23
31|Wed, 11/06/2024 |Chap. 9 Non-linear and other wave properties

PHY 711 -- Assighment #23

Assigned: 11/04/2024 Due: 11/11/2024

Continue reading Chapter 9 in Fetter & Walecka.

1. Consider a cylindrical pipe of length 0.1 m and radius 0.05 m, open at both ends. For air at 300 K
and atmospheric pressure in this pipe, find several of the lowest frequency resonances, including
at least one that has non-trivial radial dependence.
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Review —
Hydrodynamic equations for isentropic air +
linearization about equilibrium - wave equation for
air (sound waves)

Which of the following things correctly describe the wave
equation for sound in air and the wave equation for
elastic media?
a. The wave velocity is different for sound in air and
waves in elastic media.
b. The wave motion in elastic media can be either
transverse or longitudinal.
c. The wave motion for sound in air can be either
transverse or longitudinal.



Equations to lowest order 1n perturbation:

a_V_I_(V'V)V:fa lieal_E — @:_V5p
Ot 7 P, Ot o
op 0op
—+V- =0 = —+p,V-0v=0
ot (V) or oY
In terms of the velocity potential:
ovV=—-VO
55V:_V5p VY _8q)+5p -0
Ot Po ot p,
—55p+p0V-5V=O :@_pov%p:()

ot ot



Expressing pressure in terms of the density assuming constant entropy:

p=p(s,p)=p,+0p where s denotes the (constant) entropy
Py = P8, )

Sp = (2—[9] dp=c, Sp  (strictly keeping to the linear approximation)
p $5P0
v| 9L, 0P| :>—8£+c§5—p:(constant)
ot p, ot Po
2 2
= — g (21) 4 Lo % =0  (assuming we can adjust @ accordingly)
ot~ p, Ot
00p 2 o0 ,_,
——p, VD=0 — —c; V'O =0
or 1" orr
oD oD
= o0p = '0—3— P =Py — "



®
Wave equation for air:

o*d Note that, we also have:
52 —c V'O =0 *6p
—c;Viop =0
Here, c; —(6}? j -
P 5-P0 o 5p—(:2V ‘Sp=0
V=-V or’
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Presenter Notes
Presentation Notes
Review of the equations we derived last time.


Solutions to wave equation:
1 0°d
VO-——=0
c” Ot
Plane wave solution:

2
D(r,t) =A™ where k’= (ﬁj

c
Ov=-VO=—jk4e™*" < Note this is a pure
D longitudinal wave
510 _ p;) _ —ZQ)&A i(kr-or)
c, Ot o
aq) i(kr-ow
Sp=p,— =—iewp,Ae"

Ot


Presenter Notes
Presentation Notes
In general, we will be interested in time harmonic solutions to the wave equation, where omega denotes the pure frequency of the wave.


Boundary values of wave equation
Impenetrable surface with normal n moving at velocity V :
n-vV= n-ov=—n-vo

Free surface:

od
op=0 —=0
P — Py o
Time harmonic standing waves in a pipe
@ 0D
D p pr—
——c VD=0
Ot
Boundary values:
At fixed surface: n-V® =0
oD
At free surface: —=0

- Ot


Presenter Notes
Presentation Notes
For example, consider a pipe of length L and radius a.   In this pipe, we are interested in the behavior of the air.      Should you have such a piper at home, put your ear close to one end.     What do you hear?


1 0°D
VD 28 —=0 Define: k=2
c- ot g

In cylindrical coordinates:
O(r,p,z,t) = R(r)F(¢)Z(Z)e—iwr — R(F)F(¢)Z(Z)e—ikct
2 2
V= 2 8+12 a2_|_82
r 8r or r-o0¢- Oz

10 0 1 0° &
r T 2 2 T 2
ror or r-og° oz

‘|‘k2jq)(7”,¢,2,l‘) =


Presenter Notes
Presentation Notes
Here we consider the equations of linear air within the paper.   Cylindrical coordinates are the natural analysis tools for this case. 


B
> >

(i c’fr 4 (’fr | :2 ;{02 | ;;2 | kszD(r,ga,z,t) =0

O(r,p,z,t) = R F(9)Z(z)e™™

F(p)=¢e""; F(p)=F(p+27N)=> m = integer

Z(z)=¢€""; a =real (+ other restrictions)

( > 1d m

|
dr’ rdr r’

a’+ ksz(r) =0


Presenter Notes
Presentation Notes
The equation is separable in the radial, angular, z, and time variables.    Because of the cylindrical geometry,    the angular part takes the form of exp(I m phi), where m has to be an integer.    We also are motivated to assume that the Z(z) function has a sinusoidal form with an unknown constant alpha.     Finally, the equation for the radial equation now takes a familiar form.


o
(dzlld m’

|
dr’ rdr r’

For k*>a® define K=k’ -’

d> 1d m"
+ ——+k" |[R(r)=0
(drz rdr 1’ j (r)
. - dR
Cylinder surface boundary conditions: .
r
= R(r)=J (xr) where for A (X )

dx

o’ + ksz(r) =0

r=a

=0, x, =

=0

X

mn
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Presenter Notes
Presentation Notes
With certain assumptions, we can show that the radial solutions for the air motion, are Bessel functions of order m.


Bessel functions:  J, (x)

N

\
\ N ava

\A N\

\
\

XX
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Presentation Notes
Some plots of Bessel functions.


Now recall the boundary conditions

Boundary values:
At fixed surface: n-Vd =0
At free surface: (’Z_gf =(

O(r,p,2,t) = R(r)F(p)Z(z)e™
—J (Kr)ezmgo oz —la)t

For r=a, 0P(r,9,2,1) =0
or



Presenter Notes
Presentation Notes
Now consider the boundary conditions for the sound wave within the pipe, focusing on the radial direction.


.

Bessel function derviatives :

0.4+

dJ (x)

dx

R
AN ATATANN
LA (VE/ANRY;

-04

0

Note error on
pg. 552 of
F&W (thanks
to some former
students)

Zeros of derivatives: m=0: 0.00000, 3.83171, 7.01559
m=1: 1.84118, 5.33144, 8.53632
m=2: 0.00000, 3.05424, 6.70613
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Presenter Notes
Presentation Notes
Zeroes of the derivatives of Bessel functions.


Some details on the open pipe boundary conditions --

Comment --
1. Open pipe boundary condition

Ir in pipe
> > S5p

=0

end

open ends in contact with
atmospheric pressure
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®
Boundary condition for z=0, z=L.:

For open - open pipe :

Z(0)=Z(L)=0 = Z(z)= sin(%j

_Pr _
:>ap —T, p—1,2,3...

Resonant frequencies:

2
62,

72 2 2 _ 72
—=k"=kK,,ta, =k,

2
' 2 2
Kopy = > +(ﬂ—pj
v a L

C



Presenter Notes
Presentation Notes
We also need to consider the boundary conditions for the air motion in the z direction where the paper can be either open or closed.    For the open, open pipe, we then find the resonant wavevectors.


Resonant frequencies: o =ck,,,

' 2 2
a L

Comment about units of frequency --

CD(I‘,Z‘) = f(r)e_’m — f(r)e—zmvt

Note that @ has units of radians/sec

v has units of cycles/sec (Hz)

4,

Y =—
27



Example of open pipe of length L and radius a:

5 x' 2 Tp ’ Tp [ LY [ x'
Ky =| —= | | — | =|— | | 1+] — L
a L L \ a Tp )

rp=3.14,6.28,9.42....
x' ~=0.00,1.84,3.05.... forx',,x",,x",

O(r,p,z,t) = R(r)F(¢)Z(Z)e—iwt

=J (x = rje”’”’ sin (ﬂzj e
a L



Presenter Notes
Presentation Notes
More details.


Alternate boundary condition for z=0, z=L.:

For open - closed pipe :

az(0) =/Z(L)=0 = Z(z2)= cos( (2p " l)ﬂzj
dz 2L

—~ =(2p+1)”, p=0123..

g 2L

e 2+(7Z(2p+1)j2
" a 2L



Presenter Notes
Presentation Notes
Now consider other boundary conditions and their resonances.


The above analysis pertains to resonant air waves within a
cylindrical pipe. As previously mentioned, you can hear these
resonances if you put your ear close to such a pipe. The
same phenomenon is the basis of several musical instruments
such as organ pipes, recorders, flutes, clarinets, oboes,
etc.

Question — what about a trumpet, trombone, French horn, etc?
a. Same idea?
b. Totally different?

But for musical instruments, you do not want to put your ear
next to the device — additional considerations must apply.
Basically, you want to couple these standing waves to produce
traveling waves.



Modifications needed for the pandemic --

Image from the Winston-Salem Journal 11/1/2020

11/04/2024 PHY 711 Fall 2024 -- Lecture 30

21



For other instruments, the resonance is initiated by another
resonant device which couples to air --
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@In order to understand how audible sound couples to
sound wave resonances, consider the following simple
model of a sound amplifier --

V2 0°D
- 2 ot —/(x,0) Wave equation with source:
Example:

f(r,t) = time harmonic piston of radius a, amplitude £z

can be represented as boundary value of @ (r,?)

Z

—
1 > X
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Presenter Notes
Presentation Notes
This is what we will consider on Monday.


B
Wave equation with source:

1 0D
VD — =— £(r,t
R f(r,1)
Solution 1n terms of Green's function:

D(r, ) =cpo(r,z)+jd3r'jdr'G(r—r',z—r')f(r',z')

where

(Vz— 1 & JCDO(r,t)zO

c® ot

2
(Vz _012 jtsz(r—r',t—t'):—5(r—r')5(t—t')


Presenter Notes
Presentation Notes
Now think of wave equation with a source.         The Green’s function is a very powerful tool for solving these problems.   We will use similar techniques in solving the wave equation for electromagnetic waves.


.

Wave equation with source -- continued:

We can show that :

G(r—r',t—t')=

o

/

\

t'—(t T

‘r—r'

C

J

\

/

47z‘r

_r'



Presenter Notes
Presentation Notes
Result that we will derive.


Derivation of Green’s function for wave equation

2
[Vz — Clz SIZ ]G(r —r',t—t")=-0(r—-r)o(—-1")

Recall that

s
St—t)=— |e ™ g
(t—1") 272_[0


Presenter Notes
Presentation Notes
First step of derivation using Fourier transform in the time domain.


.

Green's theorem

Consider two functions /(r) and g(r)
Note that : j(hvzg — szh)z’3r = §(th — gVh)-id’r
S

VKB - _F(r.o)
(V2+k2)G(r—r ,0)=—-0(r—r")

h < ©; g(—)é

j(cf(r, )o(r—r')— Gq

7

—r', )f(r,a)))d3r=

—r, )— 5Qr -, w)VCB(r, a)))- nd’r

§(C5(r, a))Vé(]

S



Presenter Notes
Presentation Notes
In order to motivate the use of Green’s functions,    we consider the famous Green’s theorem.    Note that these details/derivations will also be discussed when we consider mathematically similar situations for electrodynamic systems.


@ ~ ~
j((l)(r,w)5(r —r')- G(|r —r'|,a))f(r,a)))d3r =

Vv

Cj)(@(r,co)Véﬂr — r'| ,a)) — G(|r — r'| ,w)V@(r,w)) -nd’r
S
Exchanging r <> r":

j(ﬁ)(r',a))5(r —l") — G(|r _r'|>0))f(r',a)))d3r' _

v

C"A)(Cf)(r',a))Véqr —r'|,a)) — G(|r —r'|,a))VCb(r',a)))-ﬁd2r'

S

If the integration volume V' includes the pointr =r":

D(r,w) = jé(‘r —r' ,a))f(r',a))d3r'+

CJS(C'Iv)(r',a))V(N?(‘r—r'

S

,a))— é(‘r —r' ,w)Vﬁ)(r',w))-ﬁdzr'

=>extra contributions from boundary



Presenter Notes
Presentation Notes
Derivation continued.


Treatment of boundary values for time-harmonic force:

, a))f(r' ,0)d’r'+

D(r, ) = I@J(jr —r'
V
fl@, o)V Glr—r V' B, @) ~d>
S

Boundary values for our example:

, a))— 5@1’ —r

-

oD 0 for x’+y’>a’

- =
Oz Y

. 2 2 2
iwea for x"+y" <a

Note: Need Green's function with vanishing gradient at z =0
ik|r—r ik|r =T

,a))z + — wherez'=-z"; z>0
47z‘r—r" 472‘1‘— r"

G(‘r—r'



Presenter Notes
Presentation Notes
In this case, we need to use a modified Green’s function to satisfy the boundary condition at z=0.


~~/

,a))ﬁﬁ\f)(r',a))

Or,w)=— § Gr-r dx' dy’
S: 2'=0 0z
_ ik|r—r'| ik|r—F'|
G(Ir - r", a)): + — wherez'=-z"; z>0
4ﬂh—r' 4ﬂh—r'
_ ik|r—r'|
G(]r—r',a)),_oz : z>0
o 27[‘1' —ry|



Presenter Notes
Presentation Notes
Some details.


Some more details --

Note: Need Green's function with vanishing gradient at z =0

ikjr—r | ik|r—T |
€ '

,a))z + — wherez'=-z", z>0
472‘1‘—1‘" 47 r—r"

Gﬂr—r'

Note that r—r"z\/(X—X')z+(y—y')2+(z_z')2

= Fl=y(x=x) +(y-y) +(z+2)
Fourier transform of velocity potential:

D(r,w) = jé(‘r—r' ,a))f(r',a))d3r'+

gf}(éf)(r',a))V'é(‘r—r'

S

,a))—é(‘r—r'

,w)V'dD(r',w))-ﬁ'dzr'

Need this term to vanish at z’=0



D(r,w) =— §> 5@ )aq)(al;’w)dx'dy'
S: z'=0
a zk|r—r'|

= —la)gajr dr' jd¢

0

z'=0
Integration domain: x'=r'cos¢'
y'=r'sing'

» !

"~pr—-r-r

Forr >> a;

Assume r is in the yz plane; ¢ = =

r =sindy + cos 0z

'sin@sin @'


Presenter Notes
Presentation Notes
Changing to more convenient coordinates.       Preparing to evaluate the expression far from the moving piston.


More details

D(r,w) = — (j) é( )861322 w)dx 'dy'
S:z'=0
a zk|r—r'| r

= —za)gajr dr' jd(ﬂ

0

Integration domain: x'=r'cos¢'

y'=r'sing’

Forr >> a;

Vo . 72-

Assume r 1sin the yz plane; ¢ =2

r =sindy + cos 0z
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iwea e™ ¢

2r
jr'dr' jd¢ve—ikr'sin9sin¢'
0

0

D(r,w) = —

2T r

1 2r o
Note that : o Id¢'e"“sm¢ =J,(u)
27

ikr a
| r'dr' J,(kr'sin 6)

0

e

= CIN)(r, W) = —lwea
r

Tudu]o (u) =wJ,(w)

s e J, (kasin )
r  kasin@

— O(r,w) = —ivea


Presenter Notes
Presentation Notes
Approximate solution continued.    In this approximation, the integral can be evaluated in terms of Bessel functions.


Energy flux: j, =ovp
Taking time average: < je> = %9?(5Vp*)

=4 o vo)-iawo) )
Time averaged power per solid angle :

<dP> <Je> ~ 221,006‘ JEYRN

dg2 2 kasin @



Presenter Notes
Presentation Notes
Estimating the power of the sound wave in this asymptotic regime.


Time averaged power per solid angle :

dP

dQ2

= i)

N

-rr

1

J,(kasin 0)[°

2 374 6
=—p.cc’k’a
2,00

0.25
0.24 1

023 4

kasin @

1
a0
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Graph of the power as a function of the polar angle theta.
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