PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 31: Chap. 9 of F&W

Linear and non-linear sound waves

1. Summary of linear sound phenomena
2. Introduction to non-linear effects

3. Analysis of instability — shock phenomena
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Exploring phase transitions in frustrated magnets
using capacitive torque magnetometry

Geometrically frustrated systems have received a lot of
attention because the magneto-crystalline anisotropy
combined with magnetic interactions gives rise to numerous
unusual noncollinear spin textures [1-3]. In spinel vanadates
such noncollinear states lead to multiferroicity and, in
pyrochlore titanates, a spin ice state forms that hosts emergent
quasiparticle excitations equivalent to magnetic monopoles.
There is an enticing potential of using these functional
properties for the development of new types of spin-based

electronics. To realize this, thin films are required. I will show PRI

that capacitive torque magnetometry is a powerful tool for Professor Christianne
characterization of structural and magnetic phase transitions in Beekman

thin film samples. I will present results on bulk and thin-film )

samples of the spin ice Ho2Ti207 [1,2] and on thin films of the Associate Professor
spinel vanadate CoV204 [3,4]. For the CoV204 thin films, I will Department of Physics
show that the films display a temperature-induced structural i . .
transition to a low temperature noncollinear state with large Florida State University

magnetic anisotropy [4], which is not seen in bulk counterparts.
For the pyrochlore titanate (Ho2Ti207), the inherent large
magneto-crystalline anisotropy leads to a highly degenerate
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26 Fri, 10/25/2024 |Chap. 8 Wave motion in 2 dimensional membranes #19
27 Mon, 10/28/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #20
28 Wed, 10/30/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #21
29 Fri, 11/01/2024 |Chap. 9 Ideal gas fluids #22
30 Mon, 11/04/2024 |Chap. 9 Traveling and standing waves in the linear approximation #23

31 Wed, 11/06/2024 |Chap. 9 Non-linear and other wave properties #24
32 Fri, 11/08/2024 |Chap. 10 |Surface waves in fluids
33 Mon, 11/11/2024 |Chap. 10  |Surface waves in fluids

PHY 711 -- Assignment #24

Assigned: 11/06/2024 Due: 11/11/2024

Finish reading Chapter 9 in Fetter & Walecka.

1. In class, we discussed how to visualize the non-linear behavior of an adiabatic ideal gas with parameter y.
Using Maple or Mathematica or other software and using a parametric plot formalism, create an animated
gif file to show the traveling waveform s(w), where s is a shape of your choice and w=x-u(s(w))t. You will

also need to choose the value of y as well.

11/6/2024

PHY 711 Fall 2024 -- Lecture 31


Presenter Notes
Presentation Notes
Schedule.


Visualization of longitudinal wave motion

From the website:
https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

©2015, Dan Russell


https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Now consider some non-linear effects in sound

Examples?

We will consider the simple case —

One dimension for motion

Fluid is assumed to be an ideal gas
Adiabatic conditions

All variables will be expressed in terms of the

density p(x,t)

W=



Effects of nonlinearities in fluid equations
-- one dimensional case

Newton - Euler equation of motion :

ov Vp
5 + (V ) V)V = fapplied -
L . op
Continuity equation : 2 +V. (pv) =0
[
Assume spatial variation confined to x direction ;

assume thatv=vx and f ., 6 =0.
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Presentation Notes
Review of basic equations,  specializing in one spatial dimension.
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@+v@+l@—p:0
Ot ox p Ox

8_,0_'_‘}8_,0_'_,0@:0
ot ox ox

Expressing pintermsof p: p= p(p)

a_p: ap apECZ(p)a_p Where a_pEC'Z(IO)
ox Op Ox ox op
/4
For adiabatic 1deal gas: ap _ yd—p p=Dp, (ﬁj
p P P
y—1 C
Cz (/O) — 7_]9 — Cé (ﬁ] where Cg = Y Po and y = _pP
p pO ,00 CV
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Decoupling the variables.


2
@+V8v+c (p) 8,0:0

Ot Ox Yo o)

Ot ox ox

Expressing variation of v in terms of v(p):

2
oV 8,0+v5v 8,0+c (,0)8,0:0
op Ot Op Ox 0o Ox

@—'0+v6—'0+p8v % =0

ot Ox Op Ox
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D
Some more algebra:

2
From Euler equation: oV (8,0 n vg—pj L& (p) Op 0
op\ ot  Ox p  Ox
From continuity equation: o + v@_ =—p ov op

or  Ox Op Ox
2
ov (—p oV 8pj+ ¢ (p) Op o

Combined equation: —

ap ap ox o, OxX
2 >
:{@j :C(f) - Y_,cC
P P op P
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y—1
Assuming adiabatic process: ¢’ = cg (£] cg _ 1Py
Po Po
(y-1)/2
e, (ﬁ]
Lo
p (r-1)/2
' d '
e B |
810 dp p 2o p() p
5 ( (r-1)/2
—vy=1 Col [ﬁj —1
7/_ \ IOO )
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Using adiabatic relationships.


= 4+
dp  p
P (v+e)P =0
Ot Ox
y—1
Assuming adiabatic process: ¢’ =c;, [ﬁ] C,
Po

(r-1)/2 9o (y-1)/2
c:co(ﬁj y=+4—"2" ('DJ —1
Lo y =1 o,
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S
Traveling wave solution:

Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for

propagation velocity u( o) using equations

. L 0
From previous derivations : L (vEc)==

ot
Apparently : u(p) <= vxe

op 0
ox

For adiabatic ideal gas and + signs :

i (y-1)/2 )
u=v+c=c, T ('Oj ——
y =1\ p, y—1
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Analysis for a traveling wave.


®
Traveling wave solution -- continued:

a—'04—(\/+c)8'0 0
ot Ox

Assume: p=p,+ f(x—u(p)t) = p, +f(x—(vic)t)

For adiabatic ideal gas and + signs :

(r-1)/2
1 2
u=v+c=c, T ['0] ——
y =1\ py y—1

Solution 1n linear approxiation:

(7+1 2 j
u=v+crv,+c,=c¢, — =C,
y—1 y-1

:>p=,00+f(x—cot)
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Checking the linear result


Some details for the full non-linear case --
Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for
propagation velocity u( o) using equations

From previous derivations : 2—’[; +(v£c) Z’O 0
x

Apparently : u(p) < vte

Note that foru =v+c¢  (choice of + solution)

8_,0+M(9p 0

ot ox
p(x,t) = py + f(x —u(p(x,1))t)
Let w=x—-u(p(x,t))t
df 8w df ow df
dw o dwox  dw

is satisfied by a function of the form

( u+u)=0



Traveling wave solution -- full non-linear case:

Visualization for particular wavetform: p=p, + f(x —u(p)t)
\ )

Assume: f(w)= p,s(w) I
w
P 1y S(x —ut)
Po

For adiabatic ideal gas:

[ (y-1)/2 A
+1 2
\7/ — L\ Py

2
u:c(7/+i(1+s(x ut)) 1)/2——]
/4
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Analysis of how to visualize the traveling wave solution.


.

Visualization continued:

y—1 y—1
Plot s(x—ut) for fixed ¢, as a function of x :

U= CO(7+1(1+S(X ut)) )/2—Lj

Let w=x—ut
x=w+ut=w+u(w)t=x(w,t)
y+1 R )
u(w)=c 1+ s(w ——
o0=a L 1son) -2
Parametric equations:

plot s(w) vs x(w,t) forrange of w ateach ¢
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Summary
ap
+u
ot (,0) 8x

Solution:  p = p, + f(x—u(p)t) = p,(1+s(x—u(p)r))

For linear case: u(p)=c,
. 1 2
For non-linear case: u(p) =c, [7/ i 1 (1+s(x— ut)) Wz _ —lj
Y- Y —

Plot s(x —ut) for fixed ¢, as a function of x :
Let w=x—ut = x=w+t+ut=w+u(w)t=x(w,t)
y+1 -2 2
u(w)=c 1+ s(w ——
o0 =a L1 so0) -2
Parametric equations: plot s(w) vs x(w,t) forrange of w
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> plot({[x(w,0,1.4), f(w),w==5.5], [x(w, L, 1L4), f(w),w==5.5], [x(w. 2. 1.4), f(w),w==5_.5], [x(w. 3, 1.4), f(w),w==5.5],
[x(w. 4. 1.4). f(w).,w=—5.5]}. thickness = 3. color = | red, blue, green. black. orange|):
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Linear wave:

SN

Non-linear wave:

ﬂW//L‘
ﬂ/wﬂm4
)
T
ff/ﬂz
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.

Linear wave

—10 0

Non-linear wave
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Animations from Maple.


Analysis of shock wave

Plots of op

Solution becomes
unphysical

)
VAV VAN 7
A A

11/6/2024

shock
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Note that the vertical axis represents the longitudinal wave displacement.    When this displacement becomes multivalued for a given coordinate x as shown, the solution  becomes unphysical.     At this point we need to consider the analysis in a different way.


Effects of amplitude of 6p

Large amplitude

Smaller amplitude
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https://bilderreich.de/1314-16349/image-waves.html

Analysis of shock wave — assumed to moving at velocity u

After shock Before shock
t, t,
Op,, OV 0P op;, OV4, 0P

Note that in this case u is assumed to be a

given parameter of the system.
11/6/2024 PHY 711 Fall 2024 -- Lecture 31
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Your textbook discusses the shock wave analysis.    Here we assume that there is a region (blue) where the analysis fails,  but assumes that we can properly analyze the physics before and after the shock.     The notation given here is similar to that given in your text.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Assume p(x,t)=p(x—ut) = PP | s

ot ox |t

: Before shbck
Sps &V, Py

p(x,t) = p(x—ut)
v(x,t) = v(x—ut)

Continuity equation:

Op O(pv o( pv— pu
a'[;+ (6x):O: ( = ) :>(v2—u)p2:(v1—u)p1

Conservation of energy and momentum:

2

= P, T 0, (Vz _”)2 = P +p1(V1 —u)

el
2 1
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Some of the details of the analysis before and after the shock event.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

After shock

Summary of equations b |
3pa Ny, P2
:>(vz—u),02:(vl—u),o1 ._ f :
2 2
:p2+p2(v2—u) :p1+p1(vl_”) | |
=e6+—(v,—u) +=2=¢+—(v,—u) +=
i 2( 2 ) P> 1 2( 1 ) P
Assume that within each regions (1 & 2), the 1deal gas equations apply
€1+p1= Y D €2+p2= y D
g v=1lp P, ¥v—=1p,

It follows that - +l(v2—u)2: L&qu(vl—u)z
y=1p, 2 y=1p 2
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Analysis of shock wave — continued
For adiabatic ideal gas, also conS|der|ng energy and
momentum conservation:

1 1 |
7/+1 p2 _|_1 592 NV, P2 i?p;, vy, 6p1
&:7/—1]?1 <7/+1 | __ x
Jo) 7/+1+p2 y—1 v
y—1 p
5
4_
S :.
= Fory=1.5
Q. 5
1-
0 | l{llﬂ 260 | 360

Ps/P;

11/6/2024 PHY 711 Fall 2024 -- Lecture 31 27


Presenter Notes
Presentation Notes
Analyzing ratio of the density after and before the shock wave.


Analysis of shock wave — continued
For adiabatic ideal gas, entropy considerations::

Ideal gas law: Pkl Adiabatic ideal gas: P — = P ”
p My plp
: E T
Internal energy density: ¢=—"%= P __ Kk =¢,T

M- (y-1)p (r-1)M,

First law of thermo: de& =Tds — pd (ij

1)
1 P 1 P dp d,O p
ds =—| d +pd(—j = [ — ¥ jzc dln(—]
T( ((V—I)P] p ) (r=1)pT\ p P g p’
s=c, ln(% + (constant)
0

¥
s, =8 =¢,In &(&j 0<s,—s5,<¢, ln(pzj yln(y_l_lj
1\ P P y—1
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Analyzing the entropy before and after the shock wave.     In general, many more relationships can be analyzed.    Consult your textbook for more details.   
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