PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103
Notes on Lecture 32:

Chapter 10 in F & W: Surface waves

1. Water waves in a channel

2. Wave-like solutions; wave speed
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Presenter Notes
Presentation Notes
In today’s lecture we will investigate transverse waves at the surface of a channel of water.


26 [Fri, 10/25/2024 |Chap.8 |Wave motion in 2 dimensional membranes #19
27 Mon, 10/28/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #20
28 Wed, 10/30/2024 |Chap. 9 Motion in 3 dimensional ideal fluids #21
29 Fri, 11/01/2024 |Chap. 9 |deal gas fluids #22
30 Mon, 11/04/2024 |Chap.9 | Traveling and standing waves in the linear approximation #23
31 Wed, 11/06/2024 |Chap. 9 Non-linear and other wave properties #24
32 |Fri, 11/08/2024 |Chap. 10 Surface waves in fluids #25
33 Mon, 11/11/2024 |Chap. 10  Surface waves in fluids

PHY 711 -- Assignment #25

Assigned: 11/08/2024 Due: 11/11/2024
Start reading Chapter 10 in Fetter & Walecka.

1. Work Problem 10.3 at the end of Chapter 10 in Fetter and Walecka. Note that some of the
ideas are discussed in Lecture 32.
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Presenter Notes
Presentation Notes
Update to schedule including a homework dealing with today’s topic.


Reference: Chapter 10 of Fetter and Walecka

Physics of incompressible fluids and their surfaces
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Consider a container of water with average height h and
surface h+{(x,y,t); (h €=» z, on some of the slides)

tmospheric pressure 1s in equilibrium with the surface of water

ressure at a height z above the bottom where the surface is at a height 2+ ¢

+pg\h+{—z) Forz<h+
= |PoTPE > 3 Here p represents density of water
D Forz>h+(
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Presenter Notes
Presentation Notes
Defining the system and the notation.


Euler/Newton equation of motion for fluid of density o :
av Vp . Vp

E — J applied _? = —&Z _7

This well-describes a fluid like water or like air, but care
needs to be exercised when considering the interaction between

the two.

In fact, we may not consider p_;, directly because:

a. Because it is a reasonable approximation
b. Because it simplifies the analysis
c. Both of the above



.

Euler's equation inside a incompressible fluid:

dv \ .V
?f — applied _719 — _gZ _719
10
Assume that v, <<v,_,v, =>-g——=0
p Oz
= p(x,p,2,0) = p, + pg({(x,y,0)+h—z)  Withinthe

water

Horizontal fluid motions (keeping leading terms):
dv_ 0Ov 1 op o¢

X X

~ :———:—g—

dt ot 0 OX Ox



Presenter Notes
Presentation Notes
Hydrodynamic equations for this case.


.

Consider a surface wave moving in the x-direction in a channel
of width b(x) and height h(x) +{(x,t) :
Continuity condition 1n integral form:

jpa’V+J.pV %—O

; 4 b(x)(h(x) + ¢ (x, t))
| Sixt) b(x)(h(x) + (x,t))dx

oy
Sl ety

o e
Wl Ieoia e eioy
o e e

vixt) v(x+dx,t)
h ( XH
_ Evaluating continuity condition:
dx O 4’ O
b(x) = —a(h(x)b(x)v(x,t))
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Presenter Notes
Presentation Notes
Considering an increment along the propagation direction including the effects of the continuity equation.


Some details Continuity condition 1n integral form:

jpa’V+jpv %—O

ot g b(x)(h(x)+ < (x,1))x
““:EJ x,t) b(x)(h(x)+ (x,t))dx

v(x,t)

b(x)
Here we are assuming that p is constant

= j odV + j ov-dA = p j b(x)—= % dx+pj 3 (B(x)(h(x) + & (x,0)v(x,1))dx =0

= b(x) ; = —%(h(x)b(x)v(x,t))
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From continuity condition:

o @

vt | vixeaxy |
— | (X e Example (Problem 10.3):

b(x)=b,  h(x)=kKx

A (A special case

A (x) sometimes found
ax at a beach.)

of o
by i —a—x((lcx)bov(x,t ) From Newton-Euler equation:

%:_K( 5\,) vaﬁv:_g%

Py VXS dt ot O
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Presenter Notes
Presentation Notes
Some details for the homework problem which is a special case.


.

Example continued

2 2
a—gz—lc(\ﬂrx@j = ¢ _K(@er@vj

ot O or o oxor
v o 52 oC B
- -2 p— =K9o| —+X

o ° ox ot e o

It can be shown that a solution can take the form:

£ (x,t)=CJ, 2—60\/; cos(wt)
VK&
: : d> 1d
Note that J, (1) satisfies the equation: s+t——+1J,(u)=0
du” u du

Therefore, for u = 20 \/;

Jxg
( d> d )Jo(u): W’ ( a’z2 +lijjo(u):_a)—2_]0(u)

X 2-|—
dx” dx du” udu Kg



Presenter Notes
Presentation Notes
More details pertaining to the homework problem.


Therefore, for u = 20 == Jx = 20 1

Jrkg \/_\/_gu

d* d 2 d> 1d o’
(xdxz +dij0(u)_K‘g(d 5 ;d—ujj (M)——K—g_] (u)
dJo(”):dJo(u) o 1

Jrg Jx
dzJO(u):dzJO(u) w 1 2_dJ0(u) P~ 1
dx’ 2 \/@\/} di 2drg x\/;

2
Therefore: X d2 + d Jo(u)_ o' d’J (M) dJ,(u) o
dx” dx kg du’ du 2\/7 \/’

d*Jyw)  dJyu) 1
kg

Detail:

du’ du u

11/08/2024 PHY 711 Fall 2024 -- Lecture 32 11



B
Example continued

3¢ _ Kg[a_gﬂaz?]

or’ Ox Ox”
2an/x
1) =CJ, (wr)
= {(x,1) [ \/& jcos @

Check:

, Danx ~ 0 0 2an/x
- CJO{ \/@ ]cos(a)t) = Kg(@x +x8x2 jCJO[ \/@ jcos(a)t)



Presenter Notes
Presentation Notes
Continued.


20
£ (x,t)=CJ, [—\/; cos(wt)
JKg J

¢(x,0) 1
0.8
0.6
0.4
0.2

-0.2 1|
-0.4
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Presenter Notes
Presentation Notes
Continued.


Imagine watching the waves at a beach — can you visualize
the configuration for the surface wave pattern to approximation
this situation?

a. Long flat beach

b. Beach in which average water level increases

c. Beach in which average water level decreases

TR

i, P T
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S
A simpler example:

Continuity condition:

‘ 0
et b= == (H0bEID)
v(x,t) ‘ v(x+dXx,t)
—) | (X —

Special case, where b and h are constant --
For constant b and 4:

% =—h— & (v(x,t))

ot OX
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Presenter Notes
Presentation Notes
A simpler example.


Example with b and h=z,= constant -- continued

dl(x,y,t)/dt

v(X,y,t)—> —> v(x+dx,y+dy,t)

Continuity condition for flow of incompressible fluid:

Ot
. : ov
From horizontal flow relations: > =—oV(

2
Equation for surface function: 2 g —ghV*¢ =0
[
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Presenter Notes
Presentation Notes
Considering the surface height.


For uniform channel:

Surface wave equation:

ot’

More complete analysis finds:

¢ =S tanh(kh)  where k = 2~
k A

2
a?_(}Zngzo 02:


Presenter Notes
Presentation Notes
For the simple case, we find the wave equation for the surface height.      In the following slides, we will find a more complete solution depends on the wavelength the of surface wave.


More detalils: -- recall setup --

Consider a container of water with average height h
and surface h+{(x,y,
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Presenter Notes
Presentation Notes
Some details for the more general case.


Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

\Y%
dV:aV+V VV—a—V+V( )+V><(V><V)=—VU——p
dt Ot ot Jo,
Assume that Vxv=0 (irrotational flow) = v=-VO
:V(—@Jr +U+£j:0

ot yo,
— —%E 132+ U+ £ = constant (within the fluid)
! P

For the same system, the continuity condition becomes
Vov=-V®=0


Presenter Notes
Presentation Notes
Considering the case of irrotational flow.


o

Attt oot et gttt

e e e o

o e a a e a a aa  a a a a a a aaa  a  aapp a  a a a aaapp a a a a a yap
_— e o e e e e e e e e g e e N e e e e e e g g e
el e e e e e e e e e g e e e e e e e e e e g
e e e e g e e e Nttt e e e e e
e g e e e Nttt e e e e

! e e e e g e e e el Nttt e e e e e e e N
B A A A
e e e e e e e o e e e e e e e e o o

> X

—

Within fluid: 0<z<h+(

oo |,
oIV g z—h)=constant  (We have absorbed p,
i in “constant”
—-V'O=0
At surface: z=h+{ with = (x, ),

dg _0¢ \,)Ca_éy4_\;8—4 wherev  =v_ (x,y,h+{,t
ot x 0y 7
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Presenter Notes
Presentation Notes
Considering the equations within the wave and at the surface.


“Full equations:
Within fluid: 0<z<h+(

~=—+1v?+ g(z—h)=constant (Ve have absorbed p,
ot in “constant”)
-V® =0

At surface: z=h+¢ with ¢ = ¢ (x, y,1)
dg _0¢  ~0¢ 0g

+v. —+v —— wherev_ =v_ (x,y,h+,t
di o ox oy o = Vi (B0 h+ 1)

Linearized equations:

oD

For OSZSh+§: —E+g(2—h)20 —Vz(D:O
dg _o¢

At surface: =h+ —=—=v (x,v,h+_,t

_8®(x,y,h+§,t)+gé,:0

ot


Presenter Notes
Presentation Notes
Taking the linear limit.


.

For simplicity, keep only linear terms and assume that
horizontal variation is only along x:

o> 0
For 0<z<h+{: qu):( =+ 2]@()@2,020

oz Ox

Consider and periodic waveform: @D(x,z,t)=Z(z)cos (k(x — ct))

:(—Z—ksz(z) =0

dz
Boundary condition at bottom of tank: v_(x,0,)=0
= d—Z(O) =0 Z(z) = Acosh(kz)

dz


Presenter Notes
Presentation Notes
Solution for the linear equations.


For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

Atsurface: z=h+¢ %—fzvz(x,h+§,t)=—aq)(x’;”rg’t)
0D(x,h+¢ 1) -
> +g¢ =0
0@ h+lr) 00 O'@(nh+dot) 0Pl h+lt)
or o or e
For  ®(x,(h+¢),t) = Acosh(k(n+ ¢ ))cos(k(x—ct))
B 22 sinh(k(h + C)) B
Acosh(k (7 + ¢ ))cos(k(x ct))( ¢’ — gk cosh(k (1 + {))j -

, g sinh(k(h+¢))
~ k cosh(k(h+¢))

— C

VR


Presenter Notes
Presentation Notes
An expression for c.


For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

, _g sinh(k(h+{) g
© Tk cosh(k(h+ )k tanh(k(’ +)

27
Assuming § << h: ¢’ = %tanh(kh) A= -
12—_ h=20 m
c- h=10m
100 200 ;\’ 300 400 500
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Presenter Notes
Presentation Notes
Evaluating c as a function of wavelength.


For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

~ %tanh(kh) For 1 >>h, ¢* ~ gh

®(x,z,t) = Acosh(kz)cos(k(x —ct))

L 00(x,h+&,t) k
g ot g

£ (x,t)= © Acosh(kh)sin(k(x - ct))

Note that for A >>h, c° ~ gh

(solutions are consistent with previous analysis)


Presenter Notes
Presentation Notes
Form of the surface wave form.


®)

General problem

mcluc_hng 3 o
non-linearities

h-
| | | - 7’ ”;”n;n
Within fluid : 0<z<h+(
— E;;it) +1v? + g(z—h)=constant (We have absorbed
~-V® =0 P, 1n our constant.)
Atsurface: z=h+( with { = §(x, y,t)
a5 = aé,+vx§—§+vy@—g where v, | =vx’y(x,y,h+§,t)

dt ot Ox oy
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Presenter Notes
Presentation Notes
Introducing the equations beyond the linear approximation that we will cover next time.
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