

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes on Lecture 32:

Chapter 10 in F & W: Surface waves

- 1. Water waves in a channel
- 2. Wave-like solutions; wave speed

26	Fri, 10/25/2024	Chap. 8	Wave motion in 2 dimensional membranes	<u>#19</u>
27	Mon, 10/28/2024	Chap. 9	Motion in 3 dimensional ideal fluids	<u>#20</u>
28	Wed, 10/30/2024	Chap. 9	Motion in 3 dimensional ideal fluids	<u>#21</u>
29	Fri, 11/01/2024	Chap. 9	Ideal gas fluids	<u>#22</u>
30	Mon, 11/04/2024	Chap. 9	Traveling and standing waves in the linear approximation	<u>#23</u>
31	Wed, 11/06/2024	Chap. 9	Non-linear and other wave properties	<u>#24</u>
32	Fri, 11/08/2024	Chap. 10	Surface waves in fluids	<u>#25</u>
33	Mon, 11/11/2024	Chap. 10	Surface waves in fluids	

PHY 711 -- Assignment #25

Assigned: 11/08/2024 Due: 11/11/2024

Start reading Chapter 10 in Fetter & Walecka.

1. Work Problem 10.3 at the end of Chapter 10 in **Fetter and Walecka**. Note that some of the ideas are discussed in Lecture 32.

Reference: Chapter 10 of Fetter and Walecka

Physics of incompressible fluids and their surfaces

Consider a container of water with average height h and surface h+ $\zeta(x,y,t)$; (h \longleftrightarrow z₀ on some of the slides)

Atmospheric pressure is in equilibrium with the surface of water

Pressure at a height z above the bottom where the surface is at a height $h + \zeta$:

$$p(z) = \begin{cases} p_0 + \rho g (h + \zeta - z) & \text{For } z \le h + \zeta \\ p_0 & \text{For } z > h + \zeta \end{cases}$$
 Here ρ represents density of water

Euler/Newton equation of motion for fluid of density ρ :

$$\frac{d\mathbf{v}}{dt} = f_{applied} - \frac{\nabla p}{\rho} = -g\hat{\mathbf{z}} - \frac{\nabla p}{\rho}$$

This well-describes a fluid like water or like air, but care needs to be exercised when considering the interaction between the two.

In fact, we may not consider ρ_{air} directly because:

- a. Because it is a reasonable approximation
- b. Because it simplifies the analysis
- c. Both of the above

Euler's equation inside a incompressible fluid:

$$\frac{d\mathbf{v}}{dt} = f_{applied} - \frac{\nabla p}{\rho} = -g\hat{\mathbf{z}} - \frac{\nabla p}{\rho}$$

Assume that $v_z \ll v_x, v_y \implies -g - \frac{1}{\rho} \frac{\partial p}{\partial z} \approx 0$

$$\Rightarrow p(x, y, z, t) = p_0 + \rho g(\zeta(x, y, t) + h - z)$$
 within the water

Horizontal fluid motions (keeping leading terms):

$$\frac{dv_{x}}{dt} \approx \frac{\partial v_{x}}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial x} = -g \frac{\partial \zeta}{\partial x}$$

$$\frac{dv_{y}}{dt} \approx \frac{\partial v_{y}}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial v} = -g \frac{\partial \zeta}{\partial v}$$

Consider a surface wave moving in the x-direction in a channel of width b(x) and height $h(x) + \zeta(x,t)$:

Continuity condition in integral form:

$$b(x)\frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} (h(x)b(x)v(x,t))$$

Continuity condition in integral form:

Here, we are assuming that ρ is constant

$$\frac{d}{dt} \int_{V} \rho dV + \int_{A} \rho \mathbf{v} \cdot d\mathbf{A} = \rho \int b(x) \frac{\partial \zeta}{\partial t} dx + \rho \int \frac{\partial}{\partial x} \left(b(x)(h(x) + \zeta(x,t))v(x,t) \right) dx = 0$$

$$\Rightarrow b(x) \frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} \left(h(x)b(x)v(x,t) \right)$$

From
$$b(x) \frac{\partial}{\partial x}$$

$$v(x,t) \qquad v(x+dx,t)$$

$$h(x) \qquad b(x)$$

$$b(x)\frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} (h(x)b(x)v(x,t))$$

Example (Problem 10.3):

$$b(x) = b_0$$
 $h(x) = \kappa x$ (A special case sometimes found at a beach.)

$$b_0 \frac{\partial \zeta}{\partial t} = -\frac{\partial}{\partial x} ((\kappa x) b_0 v(x, t))$$

From Newton-Euler equation:

$$\frac{\partial \zeta}{\partial t} = -\kappa \left(v + x \frac{\partial v}{\partial x} \right) \qquad \frac{dv}{dt} \approx \frac{\partial v}{\partial t} = -g \frac{\partial \zeta}{\partial x}$$

Example continued

$$\frac{\partial \zeta}{\partial t} = -\kappa \left(v + x \frac{\partial v}{\partial x} \right) \quad \Rightarrow \quad \frac{\partial^2 \zeta}{\partial t^2} = -\kappa \left(\frac{\partial v}{\partial t} + x \frac{\partial^2 v}{\partial x \partial t} \right)$$

$$\frac{\partial v}{\partial t} = -g \frac{\partial \zeta}{\partial x} \qquad \Rightarrow \frac{\partial^2 \zeta}{\partial t^2} = \kappa g \left(\frac{\partial \zeta}{\partial x} + x \frac{\partial^2 \zeta}{\partial x^2} \right)$$

It can be shown that a solution can take the form:

$$\zeta(x,t) = CJ_0 \left(\frac{2\omega}{\sqrt{\kappa g}} \sqrt{x} \right) \cos(\omega t)$$

Note that $J_0(u)$ satisfies the equation: $\left(\frac{d^2}{du^2} + \frac{1}{u}\frac{d}{du} + 1\right)J_0(u) = 0$

Therefore, for
$$u = \frac{2\omega}{\sqrt{\kappa g}} \sqrt{x}$$

$$\left(x\frac{d^2}{dx^2} + \frac{d}{dx}\right)J_0(u) = \frac{\omega^2}{\kappa g}\left(\frac{d^2}{du^2} + \frac{1}{u}\frac{d}{du}\right)J_0(u) = -\frac{\omega^2}{\kappa g}J_0(u)$$

Therefore, for
$$u = \frac{2\omega}{\sqrt{\kappa g}} \sqrt{x}$$
 $\Rightarrow \frac{1}{\sqrt{x}} = \frac{2\omega}{\sqrt{\kappa g}} \frac{1}{u}$

$$\left(x \frac{d^2}{dx^2} + \frac{d}{dx}\right) J_0(u) = \frac{\omega^2}{\kappa g} \left(\frac{d^2}{du^2} + \frac{1}{u} \frac{d}{du}\right) J_0(u) = -\frac{\omega^2}{\kappa g} J_0(u)$$
Detail: $\frac{dJ_0(u)}{dx} = \frac{dJ_0(u)}{du} \frac{\omega}{\sqrt{\kappa g}} \frac{1}{\sqrt{x}}$

$$\frac{d^2J_0(u)}{dx^2} = \frac{d^2J_0(u)}{du^2} \left(\frac{\omega}{\sqrt{\kappa g}} \frac{1}{\sqrt{x}}\right)^2 - \frac{dJ_0(u)}{du} \frac{\omega}{2\sqrt{\kappa g}} \frac{1}{x\sqrt{x}}$$
Therefore: $\left(x \frac{d^2}{dx^2} + \frac{d}{dx}\right) J_0(u) = \left(\frac{\omega^2}{\kappa g} \frac{d^2J_0(u)}{du^2} + \frac{dJ_0(u)}{du} \frac{\omega}{2\sqrt{\kappa g}} \frac{1}{\sqrt{x}}\right)$

$$= \frac{\omega^2}{\kappa g} \left(\frac{d^2J_0(u)}{du^2} + \frac{dJ_0(u)}{du} \frac{1}{u}\right)$$

Example continued

$$\frac{\partial^2 \zeta}{\partial t^2} = \kappa g \left(\frac{\partial \zeta}{\partial x} + x \frac{\partial^2 \zeta}{\partial x^2} \right)$$

$$\Rightarrow \zeta(x,t) = CJ_0 \left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}} \right) \cos(\omega t)$$

Check:

$$-\omega^{2}CJ_{0}\left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}}\right)\cos(\omega t) = \kappa g\left(\frac{\partial}{\partial x} + x\frac{\partial^{2}}{\partial x^{2}}\right)CJ_{0}\left(\frac{2\omega\sqrt{x}}{\sqrt{\kappa g}}\right)\cos(\omega t)$$

$$\zeta(x,t) = CJ_0 \left(\frac{2\omega}{\sqrt{\kappa g}} \sqrt{x} \right) \cos(\omega t)$$

Imagine watching the waves at a beach – can you visualize the configuration for the surface wave pattern to approximation this situation?

- a. Long flat beach
- b. Beach in which average water level increases
- c. Beach in which average water level decreases

A simpler example:

Special case, where *b* and *h* are constant -For constant *b* and *h*:

$$\frac{\partial \zeta}{\partial t} = -h \frac{\partial}{\partial x} (v(x,t))$$

Example with <u>b</u> and $h=z_0=$ constant -- continued

Continuity condition for flow of incompressible fluid:

$$\frac{\partial \zeta}{\partial t} + h \nabla \cdot \mathbf{v} = 0$$

From horizontal flow relations: $\frac{\partial \mathbf{v}}{\partial t} = -g\nabla \zeta$ Equation for surface function: $\frac{\partial^2 \zeta}{\partial t^2} - gh\nabla^2 \zeta = 0$

$$\frac{\partial \mathbf{v}}{\partial t} = -g\nabla \zeta$$

$$\frac{\partial^2 \zeta}{\partial t^2} - gh\nabla^2 \zeta = 0$$

For uniform channel:

Surface wave equation:

$$\frac{\partial^2 \zeta}{\partial t^2} - c^2 \nabla^2 \zeta = 0 \qquad c^2 = gh$$

More complete analysis finds:

$$c^2 = \frac{g}{k} \tanh(kh)$$
 where $k = \frac{2\pi}{\lambda}$

More details: -- recall setup --

Consider a container of water with average height h and surface $h+\zeta(x,y,t)$

Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

$$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = \frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2}v^2\right) + \mathbf{v} \times \left(\nabla \times \mathbf{v}\right) = -\nabla U - \frac{\nabla p}{\rho}$$

Assume that $\nabla \times \mathbf{v} = 0$ (irrotational flow) $\Rightarrow \mathbf{v} = -\nabla \Phi$

$$\Rightarrow \nabla \left(-\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + U + \frac{p}{\rho} \right) = 0$$

$$\Rightarrow -\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + U + \frac{p}{\rho} = \text{constant (within the fluid)}$$

For the same system, the continuity condition becomes

$$\nabla \cdot \mathbf{v} = -\nabla^2 \Phi = 0$$

Within fluid: $0 \le z \le h + \zeta$

$$0 \le z \le h + \zeta$$

$$-\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + g(z - h) = \text{constant} \qquad \text{(We have absorbed p}_0 \\ -\nabla^2 \Phi = 0 \qquad \qquad \text{in "constant")}$$

in "constant")

$$z = h + \zeta$$

At surface:
$$z = h + \zeta$$
 with $\zeta = \zeta(x, y, t)$

$$\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} + v_y \frac{\partial \zeta}{\partial y} \quad \text{where } v_{x,y} = v_{x,y} \left(x, y, h + \zeta, t \right)$$

where
$$v_{x,y} = v_{x,y}(x, y, h + \zeta, t)$$

♥Full equations:

Within fluid:
$$0 \le z \le h + \zeta$$

$$0 \le z \le h + \zeta$$

$$-\frac{\partial \Phi}{\partial t} + \frac{1}{2}v^2 + g(z - h) = \text{constant}$$

(We have absorbed p₀ in "constant")

$$-\nabla^2\Phi=0$$

At surface:
$$z = h + \zeta$$
 with $\zeta = \zeta(x, y, t)$

with
$$\zeta = \zeta(x, y, t)$$

$$\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} + v_y \frac{\partial \zeta}{\partial y} \quad \text{where } v_{x,y} = v_{x,y} \left(x, y, h + \zeta, t \right)$$

where
$$v_{x,y} = v_{x,y}(x, y, h + \zeta, t)$$

Linearized equations:

For
$$0 \le z \le h + \zeta$$
: $-\frac{\partial \Phi}{\partial t} + g(z - h) = 0$ $-\nabla^2 \Phi = 0$

At surface:
$$z = h + \zeta$$
 $\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} = v_z(x, y, h + \zeta, t)$

$$-\frac{\partial \Phi(x, y, h + \zeta, t)}{\partial t} + g\zeta = 0$$

For simplicity, keep only linear terms and assume that horizontal variation is only along *x*:

For
$$0 \le z \le h + \zeta$$
: $\nabla^2 \Phi = \left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2}\right) \Phi(x, z, t) = 0$

Consider and periodic waveform: $\Phi(x,z,t) = Z(z)\cos(k(x-ct))$

$$\Rightarrow \left(\frac{d^2}{dz^2} - k^2\right) Z(z) = 0$$

Boundary condition at bottom of tank: $v_z(x,0,t) = 0$

$$\Rightarrow \frac{dZ}{dz}(0) = 0$$
 $Z(z) = A \cosh(kz)$

For simplicity, keep only linear terms and assume that horizontal variation is only along *x* – continued:

At surface:
$$z = h + \zeta$$
 $\frac{\partial \zeta}{\partial t} = v_z(x, h + \zeta, t) = -\frac{\partial \Phi(x, h + \zeta, t)}{\partial z}$
 $-\frac{\partial \Phi(x, h + \zeta, t)}{\partial t} + g\zeta = 0$
 $-\frac{\partial^2 \Phi(x, h + \zeta, t)}{\partial t^2} + g\frac{\partial \zeta}{\partial t} = -\frac{\partial^2 \Phi(x, h + \zeta, t)}{\partial t^2} - g\frac{\partial \Phi(x, h + \zeta, t)}{\partial z} = 0$
For $\Phi(x, (h + \zeta), t) = A\cosh(k(h + \zeta))\cos(k(x - ct))$
 $A\cosh(k(h + \zeta))\cos(k(x - ct))\left(k^2c^2 - gk\frac{\sinh(k(h + \zeta))}{\cosh(k(h + \zeta))}\right) = 0$
 $\Rightarrow c^2 = \frac{g}{k}\frac{\sinh(k(h + \zeta))}{\cosh(k(h + \zeta))}$

For simplicity, keep only linear terms and assume that horizontal variation is only along x – continued:

$$c^{2} = \frac{g}{k} \frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))} = \frac{g}{k} \tanh(k(h+\zeta))$$

Assuming
$$\zeta \ll h$$
:

Assuming
$$\zeta \ll h$$
: $c^2 = \frac{g}{k} \tanh(kh)$

$$\lambda = \frac{2\pi}{k}$$

For simplicity, keep only linear terms and assume that horizontal variation is only along x – continued:

$$c^{2} \approx \frac{g}{k} \tanh(kh) \qquad \text{For } \lambda >> h, \ c^{2} \approx gh$$

$$\Phi(x, z, t) = A \cosh(kz) \cos(k(x - ct))$$

$$\zeta(x, t) = \frac{1}{g} \frac{\partial \Phi(x, h + \zeta, t)}{\partial t} \approx \frac{kc}{g} A \cosh(kh) \sin(k(x - ct))$$

Note that for $\lambda >> h$, $c^2 \approx gh$ (solutions are consistent with previous analysis)

$$-\frac{\partial\Phi}{\partial t} + \frac{1}{2}v^2 + g(z - h) = \text{constant} \quad \text{(We have absorbed)}$$

$$-\nabla^2\Phi=0$$

 p_0 in our constant.)

At surface:
$$z = h + \zeta$$
 with $\zeta = \zeta(x, y, t)$

with
$$\zeta = \zeta(x, y, t)$$

$$\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} + v_y \frac{\partial \zeta}{\partial y} \quad \text{where } v_{x,y} = v_{x,y} (x, y, h + \zeta, t)$$

PHY 711 Fall 2024 -- Lecture 32 11/08/2024