PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 33: Chapter10in F & W

Surface waves
« Summary of linear surface wave solutions

* Non-linear contributions and soliton solutions
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Presenter Notes
Presentation Notes
In this lecture, we will continue analyzing surface waves in water including the special non-linear soliton solutions.


This material is covered in Chapter 10 of
your textbook using similar notation.
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Wed, 11/06/2024 |Chap. 9 Non-linear and other wave properties #24
32 |Fri, 11/08/2024 |Chap. 10 Surface waves in fluids #25
33 [Mon, 11/11/2024 |Chap. 10 Surface waves in fluids; soliton solutions #26
34 \Wed, 11/13/2024 |Chap. 11 Heat conduction
35 |Fri, 11/15/2024 |Chap. 12 Viscous effects in hydrodynamics
36 Mon, 11/18/2024 |Chap. 12 Viscous effects in hydrodynamics
37 Wed, 11/20/2024 |Chap. 13 Elasticity
38 Fri, 11/22/2024 |Chap. 1-13 |Review
39 Mon, 11/25/2024 |Chap. 1-13 |Review

Wed, 11/27/2024 [Thanksgiving

Fri, 11/29/2024 |[Thanksgiving
40 Mon, 12/02/2024 |Chap. 1-13 |Review

Wed, 12/04/2024

Presentations 1

Fri, 12/06/2023

11/11/2024

Presentations 2
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Presenter Notes
Presentation Notes
Schedule.


PHY 711 — Homework # 26
Assigned: 11/11/2024  Due: 11/18/2024
Read Chapter 10 of Fetter and Walecka.

1. In your textbook and in class, we discussed the traveling wave soliton solutions to
the surface height function n(u) as a function of position x and time ¢, u = x — ct

takes the form
Mo
n(u) = :

coshg( 2—2% u)

Here 7 is a scale factor for the height which is related to the acceleration of gravity
g, the average water height A, and the speed parameter of the soliton ¢ according to

gh

With this information, show that n(u) is a solution to the non-linear equation

7 3 h? d*n(u
0 nz(u) ( )

) =g = =g 5= =0
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Consider a container of water with average height h and
surface h+{(x,y,

Atmospheric pressure p, 18 in equilibrium at the surface
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Presenter Notes
Presentation Notes
Reference system and notation.


e e e i

>
Euler's equation for incompressible fluid:

\% - - e
vy YP_ _yy_ X2 or irrotational flow -- v

applied o -
t inearized tion: V oD + h)+— |=
Continuity equation within the fluid ihearized equation. N gz=h)+—|=

ap
5+V' pv)=0 = V-v=0 tsurface: z=h+¢{ ——+gl+-2=

ot
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Presenter Notes
Presentation Notes
Summarizing the linear analysis.


@eep only linear terms and assume that horizontal variation is

only along x:
o° 0

For 0<z<h+{¢: VO=|—5+— |D(x,z,1)=0
oz~ Ox

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x—ct))
2
= (d—z—ksz(z) =0
dz

Boundary condition at bottom of tank: v_(x,0,¢)=0

= 9% 0)=0 7Z(z) = Acosh(kz)
dz 0f 0D (x,h+ ¢ ,t)
Atsurface: z=h+{ ——=v (x,h+{,t)=-
ot Oz
Also: —8®(X’h+§’t)+g§+&:0
ot o,

2 2

L FO(wheln) | of FO(uhiln) | 00(uht )

ot* ot ot* Oz


Presenter Notes
Presentation Notes
Continue analysis of linear equations.


Velocity potential: ®(x,z,t) = Acosh(kz)cos (k(x — ct))
Atsurface:  D(x,(h+¢),1) = Acosh(k(h+¢))cos(k(x—ct))

o8 0D (x,h+¢ 1) 0D (x,h+C 1) »
~ v (x,h+¢ 1) = P +8¢ + p
2 2
I CD(x,l;+§,t)+ga_§:_6 CI)(x,hz+§,t)_g8CD(x,h+§,t) L
ot ot ot oz

Acosh(k(h+§’))cos(k(x_ct))(k2 ' ok Sinh(k(h+§))}

cosh(k (7 +¢))
k cosh(k(h+{)) &

Note that this solution represents a pure plane wave. More likely, there would
be a linear combination of wavevectors k. Additionally, your text considers the
effects of surface tension which is ignored here.

In this lecture, we will focus on the effects of the non-linearities in the
Euler, continuity, and surface equations.
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Presenter Notes
Presentation Notes
Consistent analysis of the wave speed.


®)

General problem

iIncluding
non-linearities

Surface waves in an incompressible fluid

h-
Within fluid: 0<z<h+(¢
oD
— + g(z—h)=constant D =D(x,y,z,t)
—V*® =0 v=v(x,y,z,t)=-VD(x,y,z,t)
At surface: z=h+¢ with ¢ =¢(x, y,1)

v (h+§)—

a’é 04“

11/11/2024

oc 90 _ 0P(x.y.z1) where v, = v, (x,3,h+¢,1)

8x o) Oz smhil
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Presenter Notes
Presentation Notes
Returning to the full problem with non-linearities.


Some relationships at surface --

At surface: z=h+(¢ with ¢ = ¢ (x, y,1)

d§:84’+v —§+v _{_VZ:_GCD(x,y,z,t) ; where v_

dt Ot ox oy Oz " o
_dg¢

wave phase (t/T=0.000
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Linear approximation
(from Wikipedia)
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—

> X

Further simplifications; assume trivial y-dependence
O=DO(x,z,t ¢ =C(x,t
Within fluid: 0<z<h+(

ob df

At surface: v.(x,z=h+{,t)=——=
y4
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Presenter Notes
Presentation Notes
Specializing to motion along the x direction and surface direction in the z direction.


Non-linear effects in surface waves:

Dominant non-linear effects = soliton solutions

X,t =n sech n, = constant
é/( ) 0 ? ° t 0
N h 2h (representing amplitude)

gh 7o
where ¢ = ~iJgh|1+—
\/1—770/}1 s ( 2hj
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Presenter Notes
Presentation Notes
Answer that we will find for the soliton solution.


Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and

John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: p = constant
Velocity potential: ®(x,z,t); v(x,z,t)=—-VD(x,z,t¢)

The surface of the fluid is described by z=h+ (x,t). It is
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.


Presenter Notes
Presentation Notes
Summary of assumptions for our analysis.


>
Defining equations for ®(x,z,t) and £(x,t)

where 0 <z <A+ {(x,¢)
Continuity equation:
O’®D(x,z,t) O0°D(x,z,t)
> T > =
ox 0z
Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

| 0D(x,z,1) +1Kacp(x,z,z)j2 +(8®(x,z,t)jz} oo —0.

V.-v=0 = 0

ot 2|\, or | -
) )
A% A%

X z


Presenter Notes
Presentation Notes
Working through the equations within water.


Boundary conditions on functions —

Zero velocity at bottom of tank:

oD (x,0,7) 0
Oz .
Consistent vertical velocity at water surface
d 0
v.(x,z,0)|__, C"V—V VI +— 5
=il Ot
0
L, 06,
ox Ot
__00(xz0)  00(xz0 0C(n) et

0z Ox Ox Ot |.pe


Presenter Notes
Presentation Notes
Boundary effects at the bottom of the channel and at the surface.


>
Analysis assuming water height z is small relative to

variations in the direction of wave motion (x)
Taylor’s expansion about z = O:

oD 22 O°D z O'D z' 0'd

d(x,z,t) = D(x,0 t)+z—(x 0,1 )+7 - (x,0, )+; >3 (x,O,t)+Z! - (x,0,¢)---

Note that the zero vertical velocity at the bottom suggest
that to a good approximation, that all odd derivatives
8”CD vanish from the Taylor expansion. In addition,

the Laplace equation allows us to convert all even
derivatives with respect to z to derivatives with respect to x.

oD z* 0*D z? 0’ 4 0'd
DO(x,z,t) = D(x,0,t) + z—,0,¢) + — ,0.0) + — x,0,1) + — x,0,1)---
( ) = D( ) a//) 28Zz( )362( )4!624( )

_ POz Fd(xzn)

Ox’ oz*
Modified Taylor's expansion: ®@(x,z,t) ~ D(x,0,1) _%(g C?( x.,0.1 z* ot (I)
X



Presenter Notes
Presentation Notes
Here we start a number of steps to analyze the leading terms in the linearities.      In this case we perform a Taylor’s expansion about z=0 at the bottom of the channel.


Some details --

oD z° 0°D 2 0D zt 0D
D(x,z,t) = D(x,0,t) + z—(x,0,1) +— ,0,0) +— ,0,6) +— 0,¢)---
(x,2,1) = D( )Z( )252( )3!823( )4! 7 (x,0,7)
oD

Atbottom: z=0 andv,(x,0,£)=0 :>—(th) 0
Further, your textbook argues that using Fourier transforms,

_ 1 7 ke 7 N 1 7 (kZ)2 (kZ)4 ike 7
(D(x,z,t)—gj[odkcosh(kz)e f(k,t) ~2—J-dk(1+ 3 + 2 +... €7 f(k,t)

2
D(x,2,1) ~ CD(th)+%a (x,0,7) Z aq’

Z
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Check linearized equations and their solutions:

Bernoulli equations --
Bernoulli equation evaluated at z =/ + £ (x,1)

oD(x,h,t
- (& )+ g (x,1) =0

Consistent vertical velocity at z =2+ {(x,¢)
_0D(x,z,t) 0L (x,1)
0z Ot |_pe
Using Taylor's expansion results to lowest order
oD (x,h,t 0°D(x,0,¢ ol (x,t oD(x,h,t oD (x,0,t
OOk OO0 SE0nt) Bk | OO0 ey
0z Ox ot Ot Ot

=0

o*D(x,0,1)

52d(x,0,1)
or '

ox*

Decoupled equations: gh

=>linear wave equation with c°=gh


Presenter Notes
Presentation Notes
Checking lowest order (linear) term.


Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

_0D(x,z,t) 1| 0D(x,z,0) ’ oD(x,z,t) i _
: 4( nz) (206 ” <00 =0

z=h+{

Consistency of surface velocity
(2,0 | A(x,z0) 0L (D) (1)
0z Ox Ox ot

=0

z=h+{

Representation of velocity potential from Taylor’s expansion:

2 A2 4
(D()C,Z,l‘)zq)(x,()’t)_z_a ?(X,O,t)+z_a o
2 Ox 41

(X,O,t)---

4
X


Presenter Notes
Presentation Notes
Back to non-linear equations using Taylor’s expansion.


Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢@(x,7) = ®(x,0,¢)

Approximate form of Bernoulli equation evaluated at surface: z=h+ ¢

99, (h+{) ¢ L[99 P _
o 2 oon 2(5&) (UHQ ] g6 =0

_ 09 I’ 3 2(_¢j ‘=0

8t 2 Otox’ Ox
Approximate form of surface velocity expression :
¢) W o'¢ ¢
h+(x, ——=
(( o (%,0) ox ) 3lox* ot

These equations represent non-linear coupling of @(x,¢) and £ (x,¢).


Presenter Notes
Presentation Notes
Systematic keeping/limiting terms in non-linearity and in high order derivatives.      The highlighted equations are the coupled equations that we will analyze.


.

op I 0 ((M i

— | +g¢ =0.
o 2 orox j g6

Coupled equations: —
ox

((h+§(x 2w

X

3 oxt ot

Traveling wave solutions with new notation:
u=x—ct  Pp(x,0)=yw) and ¢(x,1)=n(u)

Note that the wave “speed” ¢ will be determined
Consistently --

dyw) b’ d’zw) 1(dy@)) B
‘ du 2 du’ 2( du j +gn(u) =0.
d dy))_ I d'z@w)  dn@) _
du ((h () du j 6 du’ du 0
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Presenter Notes
Presentation Notes
Decoupling the equations.


Integrating and re-arranging coupled equations

2 73 2
LAxw) ch” dy(w) | (dz(u)j 4 an(u) =0,
du 2 du’ 2 du
&, P e g ke, g
X cn 2;( (;c) A 2c3f7

d dyw)) I d4Z(U) L) _
du ((h+77(u)) du j 6 du du =0

dy(w) h d y(u)

= (h+ +cn(u) =0
()= == 5 tenw)
Now we can express dii’ () _ ' in terms of 7 :
u
,_ g kg , g
g 677 2c 20377


Presenter Notes
Presentation Notes
Analysis continued.


.

Integrating and re-arranging coupled equations — continued --
Expressing modified surface velocity equation in terms of n(u):

h2 2 h3
(h+77)(—§77— S - gc3f7j+—n"+cn 0

C 2c 2 6¢
gh) gh’ | g ghj
= |1 -= —=l1+=(n"=0
( czj 30277 c( 2¢” 7

:( ’Zf jn(u)—?n"(u)—%[n(u)]

Note: c¢”=gh+..


Presenter Notes
Presentation Notes
More derivations.


Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of 7

:( ;ng jn(u)—%n"(u)——[nw)] - 0.

Soliton solution

5 (x,1) =n(x —ct) =1, sech’ [ﬁ xz_hd)

c= \/1 g (1+ j where 77, 1s a constant



Presenter Notes
Presentation Notes
Finally arriving at the famous equation and the famous soliton solution.


Steps to solution

h h? 3 2
( —C—fjn(u)—?n"(u)—ﬁ[n(u)] ~0.

hg 1 n h’ 3 2

Let 1-28=" ST poy L gy~ = - 0.

e = ) == ") = [7(u)]

Multiply equation by 77'(r) = - ﬁnz(u)—ﬁnﬂ () ———n* ) | =0
du\ 2h 6 2h

Integrate wrt # and assume solution vanishes for u — o

7702 h2 12 1 3
—n (u)—— u)——mn(u)=0
2hn() 677()2}177()

0" () =%772(u)(770 ()

41 2 \/%du = n(u) = T =Ty sech’ (\/ 3772 uj
_ h 3 4h
(11, =) cosh’| , /—770 u
4h’

11/11/2024 PHY 711 Fall 2024 -- Lecture 33

25


Presenter Notes
Presentation Notes
More details.


.

£(xt) = n(x —ct) =, sech?| 2o X2

h  2h

Two soliton solutions with different amplitudes --

1=0.

-20 =10 0 10 20 30 40
X
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Presenter Notes
Presentation Notes
Visualization


Relationship to “standard” form of Korteweg-de Vries equation

New variables:
18227709 X = if’ and 7= 3 ct |
\ 24 \/ 2h 2n,h

Standard Korteweg-de Vries equation

3
87_7 + 6_2 =0.
Ot ox Ox

Soliton solution:

n(x,t)= g sech’ @(f — Bt) |.



Presenter Notes
Presentation Notes
Some notational manipulations.


More details
Modified surface amplitude equation in terms of 77 :

h h’ 3
( j’ )n(u)—?n (u )—E[n(u)]

Mo gh 0n dn 0On dn

Some 1dentities: —=1-—=-; =—Cc—; =—
c ot du ox du
Derivative of surface amplitude equation:
n, 3
——n"—-—nn'=0.
h —7n 3 n" ; nn'=

Expression in terms of x and ¢:

_mon _Kon 3 0n_ .
chot 3of nlox

Expression in terms of X and ¢:
877 o’n

—=0.
Ot ox 8x



Presenter Notes
Presentation Notes
More details.


Summary

Soliton solution

& (x,t)=n(x—ct) =1, sechz(ﬁ Xz—hct]

c = =g (1 + j where 77, 18 a constant
1-n, /h
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Presenter Notes
Presentation Notes
Summary.


.

John Scott Russell and the solitary wave

Over one hundred and fifty vears ago., while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves'": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

tg;i https://www.macs.hw.ac.uk/~chris/scott russell.html

"I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.

11/11/2024
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Presenter Notes
Presentation Notes
First observer of the soliton phenomenon.


https://www.macs.hw.ac.uk/%7Echris/scott_russell.html

Following this discovery, Scott Russell built a 30" wave tank in his back garden and
made further important observations of the properties of the solitary wave.

woEs sl The taony Beer o Bavsdednw Byhh s vetee W
"

'L__-:"'\ ' 1/]

L i - " -y 3

s = = = —

Lad . - -

- T

e o 4 b —— .

— o

A D3
5 I

l——L/\ m
-‘i : o 2 : —RTTT ®
o2 r E i | b s B e, LIS
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Throughout his life Russell remained convinced that his solitary wave (the " Wave of
Translation") was of fundamental importance, but nineteenth and early twentieth
century scientists thought otherwise. His fame has rested on other achievements. To
mention some of his many and varied activities, he developed the "wave line" system of
hull construction which revolutionized nineteenth century naval architecture, and was
awarded the gold medal of the Royal Society of Edinburgh in 1837. He began steam
carriage service between Glasgow and Paisley in 1834, and made one of the first
experimental observations of the "Doppler shift" of sound frequency as a train passes.
He reorganized the Royal Society of Arts, founded the Institution of Naval Architects
and 1in 1849 was elected Fellow of the Royal Society of London. He designed (with
Brunel) the "Great Eastern" and built it; he designed the Vienna Rotunda and helped to
design Britain's first armoured warship (the "Warrior"). He developed a curriculum for
technical education in Britain, and it has recently become known that he attempted to
negotiate peace during the American Civil War.
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Reconstruction of the canal soliton --
http://www.ma.hw.ac.uk/solitons/

Soliton home page at Heriot-Watt

John Scott Russell's Soliton Wave Re-created

On Wednesday 12 July 1995, an international gathering of scientists witnessed a re-creation of
the famous 1834 'first' sighting of a soliton or solitary wave on the Union Canal near Edinburgh.
They were attending a conference on nonlinear waves in physics and biology at Heriot-Watt
University, near the canal.

The occasion was part of a ceremony to name a new aqueduct after John Scott Russell, the
Scottish scientist who made the original observation. The aqueduct carries the Union Canal over
the Edinburgh City Bypass.

ENLARGE
Abwyn Scott naming the aqueduct with Chris Eilbeck and Laura
. Kruskal looking on.

ENLARGE

Setting up the experimental
apparatus on the Scott Russell
Aqueduct.

a0
e
Va3

11/11/2024 PHY 711 Fall 2024 -- Lecture 33 33


http://www.ma.hw.ac.uk/solitons/

Photo of canal soliton http://www.ma.hw.ac.uk/solitons/

11/11/2024 PHY 711 Fall 2024 -- Lecture 33
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Presenter Notes
Presentation Notes
Historic realization of the soliton wave in a channel.

http://www.ma.hw.ac.uk/solitons/
http://www.ma.hw.ac.uk/solitons/

Diederik Korteweg

Diederik Johannes Korteweg

Born 31 March 1848
Den Bosch

Died 10 May 1941 (aged 93)
Amsterdam

Nationality Dutch
Alma mater  University of Amsterdam

Known for Korteweg—de Vries equation,
Moens—Korteweg equationl']

Scientific career
Fields Mathematics

Institutions  University of Amsterdam

11/11/2024

Gustav de Vries

Born 22 January 1866
Amsterdam
Died 16 December 1934 (aged 68)

Nationality Duich

Alma mater University of Amsterdam

Known for Korteweg—De Vries equation
Scientific career

Fields Mathematics
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