PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Notes on Lecture 34: Chap. 11 in F&W

Heat conduction

1. Basic equations

2. Boundary value problems
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Presenter Notes
Presentation Notes
In today’s lecture we will take a quick look at heat transfer following Chapter 11 of your textbook.


Physics

Colloquium

The ties that bind: understanding nuclear
forces from lattice QCD

There are many open questions in nuclear physics
which only lattice QCD may be able to answer. One
example is understanding the nature and origin of
the fine-tuning of interactions between nucleons and
nuclei observed in nature. The first step toward
building a bridge between the underlying theory,
QCD, and nuclear observables is full control over
one- and two-nucleon systems. While enormous
strides have been made in recent years in precision
calculations of single-nucleon observables, the
history of two-nucleon calculations has generated
more questions than answers. In particular, there is a
controversy in the literature between calculations
performed using different theoretical techniques,
even for calculations far from the physical point,
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31 Wed, 11/06/2024 Chap. 9 Non-linear and other wave properties #24
32 Fri, 11/08/2024 |Chap. 10 Surface waves in fluids #25
33 Mon, 11/11/2024 |Chap. 10 Surface waves in fluids; soliton solutions #26
34 Wed, 11/13/2024 \Chap. 11 Heat conduction #27
35 Fri, 11/15/2024 |Chap. 12 Viscous effects in hydrodynamics
36 Mon, 11/18/2024 (Chap. 12 Viscous effects in hydrodynamics
37 Wed, 11/20/2024 Chap. 13 Elasticity
38 Fri, 11/22/2024 |Chap. 1-13 |Review
39 Mon, 11/25/2024 Chap. 1-13 |Review

Wed, 11/27/2024 | Thanksgiving

Fri, 11/29/2024 | Thanksgiving

Mon, 12/02/2024 Presentations 1

Wed, 12/04/2024 Presentations 2
40 Fri, 12/06/2024 |Chap. 1-13 |Review
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Presentation Notes
Schedule.


PHY 711 — Homework # 27
Assigned: 11/13/2024  Due: 11/18/2024

Read Chapter 11 of Fetter and Walecka.

—p
1. L

A cylindrical solid material with cylindrical radius @ and length L and thermal diffu-
sivity & has a time-dependent cylindrically symmetric temperature profile T'(r, 2, t).
In these cylindrical coordinates, the material is contained within 0 < r < a and
0 < z < L. In the absense of external heating, the temperature profile is is well-
described by the equation of heat conduction

or -,
a—h;VT.

At t <0, the material is prepared so that its temperature profile is given by

0 for r>a andfor z> L

T(T’-,Z-,tiﬂj:{ Acos(ﬂz/Lj for r<a El,Ild./DI' ZEL-,

where A is a given constant. The cylindrical solid is placed in a thermally insulated
container so that its temperature is well-described by the boundary conditions

n-V7(r,zt)=0

at all of its surfaces. Find an expression for the temperature profile of this system
T(r, z,t) for t > 0.
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Conduction of heat

Jn

Enthalpy (/) of a system at constant pressure p
non uniform temperature T (r, t)

mass density o and heat capacity c,

H = [ pe, (T(r.0) =T, Jd*r + Hy (T;, p)
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Presenter Notes
Presentation Notes
Enthalpy as a measure of heat of a system at constant pressure in terms of the heat capacity of the material.


®
Note that in this treatment we are considering a system at

constant pressure p

Notation: Heat added to system - dQ =1TdS
External work done on system  --dW =—pdV
Internal energy —-dE =dQ +dW =TdS — pdV
Entropy - dS
Enthalpy —-dH =d(E+ pV)=1dS +Vdp

Heat capacity at constant pressure:

(3] ()8
» \dr), \or), \oT),
szjpcpd3r

More generally, note that ¢, can depend on T; here we are
assuming that dependence to be trivial.



Presenter Notes
Presentation Notes
Some notations and concepts from thermodynamics.


Conduction of heat -- continued
H = [ pe, (T(r.0) =T, Jd*r + Hy(T,. p)
4

Time rate of change of enthapy:

dH oT (r,t
E:}[pcp o —Ijh a’A+j‘,0qa’3
heat flux heat source
GT(r,t)__vo, |
PC, = Jn T P4

ot

11/13/2024 PHY 711 Fall 2024 -- Lecture 34 7


Presenter Notes
Presentation Notes
Now consider how the enthalpy of a system may change in time.   The temperature may change, there may be heat flux,   and there may be a source or sink for heat flow.


Conduction of heat -- continued

oT (r,t) , ,
Empirically: j, =—k,VT (r,t)
oT (r,t ]
_ Tet) VT (1) + -
ot c,
K= ki thermal diffusivity

pc,
https://www.engineersedge.com/heat_transfer/thermal_diffusivity table 13953.htm
Typical values (m?/s)
Air 2x10°
Water  1x10~
Copper 1x104



Presenter Notes
Presentation Notes
In order to relate these quantities, we need to know how enthalpy is related to temperature and we will use the empirical relations based on observation that heat flux is proportional to the gradient of temperature.   The thermal diffusivity coefficient is highly dependent on the material as seen in this short list taken from the internet.

https://www.engineersedge.com/heat_transfer/thermal_diffusivity_table_13953.htm

Boundary value problems for heat conduction

To
C
b
— X
a .

5T(l‘,t) _KVzT(r,t)zi

Ot c,
Without source term: GT(g:,t) —kV°T (r,t ) =0

Example with boundary values:7'(0, y,z,t)=T(a, v, z,t
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Presenter Notes
Presentation Notes
Example boundary value problem which we will solve in the case that the source term is zero.


Have you ever encountered the following equation in other
contexts and if so where?

il g’t) T (1,0 =0




Boundary value problems for heat conduction

oT
(1) _ 7 (r,0) =0 To
ot
T(O,y,z,t)zT(a,y,z,t)zﬂ) b
8T(x,0,z,t) B 8T(x,b,z,t) 0 - a X
Gy 5)/ — Assuming thermally
GT(x,y,O,l‘) aT(x,y,C,t) insulated boundaries
a p— a p— —
SeparaZtion of varables: T (x,v,2,t)=T, + X(x)Y(y)Z(z)e ™"
d’* X d’Y A
Let = — =—[7Y =—y7
e T pY m =

:>—/1+K(a2+,82+7/2):0
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Presenter Notes
Presentation Notes
Using separation of variables to solve the problem.


Boundary value problems for heat conduction

T(x,y,Z,t):Z) +X(X)Y(y)z(z)e—/1t b

X(0)=x(a)=0 :X(x):sin(mzx) )

dY(O)_dY(b)_ B nry
0 = a0 =0 :>Y(y)—cos( by/

dz(0) dZ(c 7z )
a’i): di): :Z(z):cos(pc )
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Presenter Notes
Presentation Notes
Some details for this case.


Boundary value problems for heat conduction

Full solution:

T(x,y,z,t) =1, +ZCnmp sin(mﬂxjcos(nzyjcos(pﬂzjeﬂ’””"t

nmp a C
2 2 2
=\ (%) + (57 +(2)
P a b C
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Presenter Notes
Presentation Notes
More details.


Full solution:

mnp

T(x,y,z,t):To +ZCnmp Sin(mﬂxjcos(nzyjcos(pﬂz)ei t

nmp

a

C

At t=0,z=0

11/13/2024

PHY 711 Fall 2024 -- Lecture 34



()

Full solution: =

C

T(x,y,z,t):TOnLZC sin(mﬂx cos(nzyjcos(pﬂzje%’”’”’t

Time evolution

nmp=100
at z=0

11/13/2024

nmp

0.6—

0.6 04

X

=
b ]
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Presenter Notes
Presentation Notes
Visualization of the time evolution.


What real system could have such a temperature
distribution?

Comment — While one can imagine that the boundary
conditions can be readily realized, the single normal mode
patterns are much harder. On the other hand, we see that
the smallest values of lambda have the longest time
constants.



B
Here we assume that the

Oscillatory thermal behavior . o
spatial variation is along z

T(z=0,t)=R Te_“‘”

N

Z—>

2
a_T:K‘a]; Let f(Z):Aeaz
at 62 ; 2 _ lC{) _ 3in/2 0
Assume: T'(z,t) = m(f(z)e—zwt) a=-—=e" —
d’f N
(wiw) f=K—3 (1-1) ==
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Presenter Notes
Presentation Notes
Now consider an oscillatory solutions.


Oscillatory thermal behavior -- continued

T(z=0,0)=R(T,e ™)

) i

T(Z t) iR +(1 l)Z/5e—la)t

2K
0,

where O =

Physical solution:  T(z,t)=T,e*"’ cos(

11/13/2024 PHY 711 Fall 2024 -- Lecture 34

z
—— il

J

18



Presenter Notes
Presentation Notes
Analysis of solution.


T(z,t)=Te"" cos(é — ot

t=0.

J

N

11/13/2024
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Presenter Notes
Presentation Notes
Animation of solution.


Initial value problem in an infinite domain; Fourier transform

aT(l‘,f)_szT(r,l‘)Z 0
Ot
T(r,0)= f(r)
o T :J'dsre—iq.rT( )
)= Jare
— aTg(;,t) = —xy’T (1)

T(q,t)=T(q,0)e ™"


Presenter Notes
Presentation Notes
Now consider an initial value problem.


Initial value problem in an infinite domain; Fourier transform

1
(27)

T(q,7)= jd3re_iq'rT(r,t) = T(r,t)= jd3qeiq'rf(q,t)

f(q,t) = f(q,O)e_’“]zt

1
(27)

T(q.0)=f(a)=]dre™" f(r)

T(r,t)= jd%'G(r—r',t)T(r',O)

T(r,t)= J. d>qe" T (q,O)e_’(qzt

1
(27)

with G(r -1, t) J' d> qeiq-(r—r')e—rcqzt


Presenter Notes
Presentation Notes
Using Green’s functions to analyze the results.


Initial value problem in an infinite domain; Fourier transform

T(r,t)= jd%'G(r—r',t)T(r',O)

with G(r—r',¢)

21 )3 J‘d3qeiq-(r—r')e—xq2t
7T

(

1 -1’
G(l‘—r',t)z (47?14)3/2 e T



Presenter Notes
Presentation Notes
Some details.


Heat equation in half-space

oT(r,?)
Ot
T(r,t)= T(z,t) with initial and boundary values:

I'(z,t)=0 forz<0
7(z,0)0=0 forz>0
7(0,0)=1, fort=0

—&V°T(r,t)=0

Solution: 7 =T, erfc(

where erfc E ——
Jelera


Presenter Notes
Presentation Notes
For half space boundary.


More details about the error function --
https://dImf.nist.qov/7

§7.2(i) Error Functions @

7.2.1

7.2.2

11/13/2024

¥
2 f )
erffz=—= | et dt,
Vi ) )

2 2
erfcz = — e " dt=1—erfz
) @

erfe( 10x)

.
-
|

b
.'-.

|\
\ N N
-3 -2 -1 0 1 2 3
Figure 7.3.1: Complementary error functions erfc x and erfc (l[lx),
—3<x=<3.&r
PHY 711 Fall 2024 -- Lecture 34 24

X


https://dlmf.nist.gov/7

®
Heat equation in half-space -- continued

8T(Z,I)_K82T(Z,t) 0

ot 07
Solution: 7T =T, erfci j

N

where erfc E e du
=l w
Note that d erfc(x) = d 2 e du = —ie
dx dx 7~ \/;



Presenter Notes
Presentation Notes
Some details.


Z
T =T, erfc
" (N?zj

N—
0.8 —~
0_6* N\ e . _t=50
= 0.4 \\ L e
T, w ——
0-2 \tzo 07 \\\-‘-
0 ==
0 2 4 6 8 10
X
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Presentation Notes
Plots of solution at various times.


Temperature profile

0.8-
0.6-
0.4-
0.2-
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Presenter Notes
Presentation Notes
Animation.


Another initial value example with one spacial dimension

oT(zt)  FT(n1)
e _

ot 0z”
With the 1nitial condition 7'(z,t=0)=T7,0(z)

T 2
In this case, T'(z,t) = —=2 exp( z j

Jarxt Akt

1 z’
Here we need to show that  o6(z) = lim exp| —
(=0 (\/4727(‘1‘ L dxct jj




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

