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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF  in Olin 103

Notes on Lecture 35: Chap. 12 in F & W

Viscous fluids 
1. Viscous stress tensor

2. Navier-Stokes equation

3. Example for incompressible fluid – Stokes “law”

4. Viscous effects on sound waves => next time

Presenter Notes
Presentation Notes
In this lecture, we will consider some effects of viscosity on the motion of fluids, following Chapter 12 of your textbook.
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Presenter Notes
Presentation Notes
Schedule.
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Equations for motion of non-viscous fluid
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Presenter Notes
Presentation Notes
Reviewing the fluid equations that we have discussed previously, combining Newton’s equations with the continuity equation to find a new convenient form.
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Equations for motion of non-viscous fluid -- continued
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Modified Newton-Euler equation in terms of fluid momentum:
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Presenter Notes
Presentation Notes
Here we recognize terms that have the  units of force/area and can be described as a stress tensor Tij.
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Now consider the effects of viscosity
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In terms of stress tensor:
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As an example of a viscous effect, consider --

material dependent parameter

Presenter Notes
Presentation Notes
The next step is to imagine that the additional effects of viscosity should/can be represented as a viscous stress tensor.     The example of sheer force suggests that the viscous stress tensor involves derivatives of the velocity of the fluid.
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Effects of viscosity
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Presenter Notes
Presentation Notes
Imagining the most general form of the viscous tensor, we consider all derivatives of all components of fluid velocity, separating out the terms with zero trace, with the remaining terms proportional to the divergence of the velocity and representing the “bulk” viscosity.
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Effects of viscosity -- continued
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Presenter Notes
Presentation Notes
Now we can write the fluid equations with the full stress tensor.    The continuity equation still applies.   The so-called Navier-Stokes equation summarizes the expected behavior of fluids in terms of the material dependent viscosity parameters eta and zera.
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Newton-Euler equations for viscous fluids
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Fluid η/ρ (m2/s) η (Pa s)
Water 1.00 x 10-6 1 x 10-3

Air 14.9  x  10-6 0.018 x 10-3

Ethyl alcohol 1.52 x  10-6 1.2 x 10-3

Glycerine 1183  x  10-6 1490 x 10-3

Typical viscosities at 20o C and 1 atm:

Presenter Notes
Presentation Notes
Here is a list of some typical values of the viscosity parameter eta.
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Example – steady flow of an incompressible fluid in a long 
pipe with a circular cross section of radius R
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Presenter Notes
Presentation Notes
Example of a measurement of viscosity for irrotational flow.
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Example – steady flow of an incompressible fluid in a long 
pipe with a circular cross section of radius R -- continued
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Presenter Notes
Presentation Notes
Continued analysis of simple viscous flowl
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Example – steady flow of an incompressible fluid in a long 
pipe with a circular cross section of radius R -- continued
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Presenter Notes
Presentation Notes
Solving for the velocity profile.
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Comment on boundary condition 
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v(r) L
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Fluid approximately stationary 
at boundary
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Example – steady flow of an incompressible fluid in a long 
pipe with a circular cross section of radius R -- continued
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Presenter Notes
Presentation Notes
This analysis is useful for measuring eta.
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Example – steady flow of an incompressible fluid in a long 
tube with a circular cross section of outer radius R and inner 
radius κR

L

R
κR

2

2

1 2

2

1 2

2 2

1 2

( )

1 ( )

( ) ln( ) C
4

( ) 0 ln( ) C
4

( ) 0 ln( ) C
4

z

z

z

z

z

pv r
L

d dv r pr
r dr dr L

prv r C r
L

pRv R C R
L
p Rv R C R

L

η

η

η

η
κκ κ
η

∆
∇ = −

∆
= −

∆
= − + +

∆
= = − + +

∆
= = − + +

Presenter Notes
Presentation Notes
Another related system with a cylindrical shell.
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Example – steady flow of an incompressible fluid in a long 
tube with a circular cross section of outer radius R and inner 
radius κR -- continued
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Presenter Notes
Presentation Notes
The final result again can be used to measure the viscosity.
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More discussion of  viscous effects in incompressible fluids
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Stokes' analysis of viscous drag on a sphere of radius 
moving at speed  in medium with viscosity :
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Presenter Notes
Presentation Notes
Changing to an analysis of  viscous flow as a drag force.
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Have you ever encountered Stokes law in previous 
contexts?
a. Milliken oil drop experiment
b. A sphere falling due to gravity in a viscous fluid, 

reaching a terminal velocity
c. Other? 
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( ) 2

Newton-Euler equation for incompressible fluid, 
modified by viscous contribution (Navier-Stokes equation):

                                                    Kinematic vis
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∂
v v v f v

cosity

Fluid ν (m2/s)
Water 1.00 x 10-6

Air 14.9  x  10-6

Ethyl alcohol 1.52 x  10-6

Glycerine 1183  x  10-6

Typical kinematic viscosities at 20o C and 1 atm:

Presenter Notes
Presentation Notes
In this case, we will consider an incompressible fluid in which case eta/rho is the important parameter.
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Presenter Notes
Presentation Notes
Before deriving Stokes law of viscous drag, it is interesting to recall its effects.
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Presenter Notes
Presentation Notes
Objects moving in the presence of the Stokes viscous drag, tend to read a steady “terminal” velocity.
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Presenter Notes
Presentation Notes
Or the velocity decays to zero.
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Recall:  PHY 711 -- Assignment #21     Oct. 30, 2024

Determine the form of the velocity potential for an 
incompressible fluid representing uniform velocity in the z 
direction at large distances from a spherical obstruction 
of radius a. Find the form of the velocity potential and the 
velocity field for all r > a. Assume that for r = a, the 
velocity in the radial direction is 0 but the velocity in the 
azimuthal direction is not necessarily 0. 
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20

0

, cos
2
ar v r
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θ θ

∇ Φ =

 
Φ = − + 
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In the present viscous case, we 
will assume that v(a)=0.

Presenter Notes
Presentation Notes
In previous discussions without viscosity, the velocity near the sphere is not necessarily zero.     How will this be affected in the presence of viscosity?
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( ) 2

Newton-Euler equation for incompressible fluid, 
modified by viscous contribution (Navier-Stokes equation):

Continuity equation:   0 

applied
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This treatment follows Landau & Lifshitz, Fluid Mechanics

Presenter Notes
Presentation Notes
Here we keep the dominant terms, finding a relationship between the pressure and the velocity.
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Presenter Notes
Presentation Notes
This analysis follows the treatment of Landau and Lifshitz.
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Digression
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Presenter Notes
Presentation Notes
Deducing the form of the velocity



11/15/2024 PHY 711  Fall 2024 -- Lecture 35 27

( )( )

( )( ) ( )( )
( )

( ) ( ) 0)(      0ˆ)(     0ˆ)(
 0            0

ˆ)(ˆˆ
ˆ

444

2

2

=∇⇒=×∇∇⇒=×∇∇

=×∇∇⇒=×∇

∇−⋅∇∇=×∇×∇

=
+×∇×∇=

rfrfrf

rfrfrf
u

rf

zz
vv

zzz
zu

uuv

2 4
1 2 3

2 4
1 3

2
2 4

12 3

( )

2 2 2cos 1 cos 1 4

1sin 1 sin 1 4

r

Cf r C r C r C
r

df C Cv u u C
r dr r r

d f df C Cv u u C
dr r dr r rθ

θ θ

θ θ

= + + +

   = − = − − +   
   

   = − − − = − − − −   
  

Presenter Notes
Presentation Notes
Here we find the most general form of the equation that satisfies the differential equation.
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Presenter Notes
Presentation Notes
Some details.
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Presenter Notes
Presentation Notes
Assume that the velocity achieves steady flue far from the sphere and is zero on the sphere boundary.
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Determining pressure:
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Presenter Notes
Presentation Notes
Finding all the constants and solving for the pressure .
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( )
( )

0 2

2
0

3( ) cos
2

Corresponds to:
cos ( ) 4 cos (6

  

)

F = 6D

D

Rp r p u
r

F p R p R u

u R

R

η θ

π η θ

η π

θ π

 = −  
 

= − = −

⇒ −

u

FD

Presenter Notes
Presentation Notes
Deducing the drag force from the solution to the differential equation.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

