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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF  in Olin 103
Notes on Lecture 36

Continued discussion of viscous fluids: 
Chap. 12 in F & W

1. Some general comments

2. Navier-Stokes equation

3. Review of results from last time – Stokes “law”

4. Effects on linearized sound waves

Presenter Notes
Presentation Notes
In this lecture, we will consider some effects of viscosity on the motion of fluids, following Chapter 12 of your textbook.
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Presenter Notes
Presentation Notes
Schedule.
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Comment on outstanding homework.
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Equations for motion of non-viscous fluid --
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Presenter Notes
Presentation Notes
Here we recognize terms that have the  units of force/area and can be described as a stress tensor Tij.
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Now consider the effects of viscosity

ideal viscous

ideal ideal

In terms of stress tensor:
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As an example of a viscous effect, consider --

material dependent parameter

Presenter Notes
Presentation Notes
The next step is to imagine that the additional effects of viscosity should/can be represented as a viscous stress tensor.     The example of sheer force suggests that the viscous stress tensor involves derivatives of the velocity of the fluid.
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Effects of viscosity
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Argue that viscosity is due to shear forces in a fluid of the

ess and diagonal terms:

 form:

2
3

drag x

k
kl kl k

k
l

l

l

v
y

v vT

F
A

x x

η

η δ ζδ

∂
=

∂

 ∂ ∂
= − + − ∇ ⋅ − ∇ ⋅ ∂ ∂ 

v v

viscosity bulk (or dilational) viscosity

( ) ( )

deal viscous

i

visc

dea

ous

l

Total stres

2
3

s tensor:   kl

k l kl

k
kl kl k

i
kl kl

kl

l
l

kl

v v p

v vT
x

T T

T

x

T

ρ δ

η δ ζδ

=

+

 ∂ ∂
= − + − ∇ ⋅ − ∇ ⋅ ∂ ∂

+

=


v v

Presenter Notes
Presentation Notes
Imagining the most general form of the viscous tensor, we consider all derivatives of all components of fluid velocity, separating out the terms with zero trace, with the remaining terms proportional to the divergence of the velocity and representing the “bulk” viscosity.
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Effects of viscosity -- continued
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Presenter Notes
Presentation Notes
Now we can write the fluid equations with the full stress tensor.    The continuity equation still applies.   The so-called Navier-Stokes equation summarizes the expected behavior of fluids in terms of the material dependent viscosity parameters eta and zera.
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Newton-Euler equations for viscous fluids
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Fluid η/ρ (m2/s) η (Pa s)
Water 1.00 x 10-6 1 x 10-3

Air 14.9  x  10-6 0.018 x 10-3

Ethyl alcohol 1.52 x  10-6 1.2 x 10-3

Glycerine 1183  x  10-6 1490 x 10-3

Typical viscosities at 20o C and 1 atm:

Presenter Notes
Presentation Notes
Here is a list of some typical values of the viscosity parameter eta.
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More discussion of  viscous effects in incompressible fluids

( )

Stokes' analysis of viscous drag on a sphere of radius 
moving at speed  in medium with viscosity :
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“Derivation”
1. Consider the general effects of viscosity on fluid equations
2. Solve the linearized equations for the case of steady-state 

flow of a sphere of radius R
3. Infer the drag force needed to maintain the steady-state flow  
4. Note that solution is special to the sphere geometry.

u

FD

Presenter Notes
Presentation Notes
Changing to an analysis of  viscous flow as a drag force.
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Some of the details
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Additional effects of viscosity – allowing for changes in entropy
  -- particularly in the case of sound waves in air 
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Newton-Euler equations for viscous fluids
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Newton-Euler equations for viscous fluids – effects on sound
   Without viscosity terms:
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Sound waves without viscosity -- continued
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Pure longitudinal harmonic wave solutions
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Newton-Euler equations for viscous fluids – effects on sound
   Recall full equations:
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Newton-Euler equations for viscous fluids – effects on sound
   Note that pressure now depends both on density and 
entropy so that entropy must be coupled into the equations
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Newton-Euler equations for viscous fluids – 
linearized equations
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Newton-Euler equations for viscous fluids – 
linearized equations
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Newton-Euler equations for viscous fluids – 
linearized equations
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Newton-Euler equations for viscous fluids – effects on sound
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Linearized hydrodynamic equations
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Entropy and mechanical modes are independent



11/18/2024 PHY 711  Fall 2024 -- Lecture 36 23

( )

2 22
2 2 2 0 0

0 0
0

2
2 2

0 0
0

Longitudinal solutions:    ( :

4
3

0

0)

0
p

T c kkc k s
c

i c k i k

i

s

δ

ρ βωω η ζ δρ δ
ρ

κβ δρ ω γκ δ
ρ

  +  


⋅ ≠

− + −
 

=

++ =

v k

Linearized hydrodynamic equations;  full plane wave solutions:
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2 22
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Linearized hydrodynamic equations;  full plane wave solutions:
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New phenomena in the linear regime
1. Spatial attenuation of waves
2. New transverse modes
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Comment on HW 29   -- Analysis of special case of linearized 
sound wave equations 
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     alternatively we can use   

Eq. 62.24 of your textbook also shows 

 1)

that

(   )  ( 1
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T c T
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T T
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