PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 40

Review of topics covered in this course
1. Comment on numerical methods
2. Review of the Sturm-Liouville equation

3. Solving some example problems
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Presenter Notes
Presentation Notes
Comment on order of topics???


Brief comment on numerical methods --

Consider a continuous function  x(¢)

A Taylor expansion 1n the neighborhood of t:

X(f+h) X(f)+h d.X(t) L h2 dzx(t) n h3 d3X(t)

dt 3 dr’
Let x, _nh) )

X, +hy +— hza o,

Here it is assumed that h is small and h3<<h?
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Example differential equation (one dimension);
2
dx—f(t) Let t=nh (n=12,3...)

dt*
x,=x(nh); f, = f(nh)

Euler's method :

X . =X, +hv +%h2fn

Vn+1 — Vn +hfn

Velocity Verlet algorithm :

1
X . =X +hv +§h2fn

1
Vn+1 :Vn +§h(fn +J(In+1)




Note that it is possible to check the magnitude of the
terms that you are neglecting and estimate the error.
Also, one needs to be careful of device-dependent
restrictions. In general, it is useful to use scaled

coordinates.

For example, 1+1x 107" =1.000000000000001
=1.0 for most devices.

When you perform numerical work, you need to
take care about your algorithms both in terms of

software and hardware.



Review of the Sturm-Liouville equations

Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Why are Sturm-Liouville equations interesting?

A. They sound fancy?

B. They describe all second-order differential
equations?

C. Another method of graduate student torture?

D. Several special functions are solutions to
Sturm-Liouville equations?

E. They have several interesting properties?



Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x)— Aa(x)) p(x)=0

dx X

Bessel functions: 0<x <

T(x)=—x v(ix)=x o(x)= 1 A=v: p(x)=J,(x)
X

Legendre functions: —-1<x<1
T(x)z—(l—xz) v(x)=0 o(x)=1 A=I(l+1) ¢@(x)=PB(x)
Fourier functions: 0<x<1

r(x)=1 v(x)=0 o(x)=1 A=n'm" @(x)=sin(nrx)



Homogenous problem : (— 4 7(x) a’i +v(x)— /Ia(x)j% (x)=0
X X

Inhomogenous problem : (— 4 7(x) 4 +v(x)— /Ia(x)jqﬁ(x) = F(x)
dx dx

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

J(X)Z ﬁa(x])vﬁq(x') _ 5(x—x')

n




Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(ﬂ%w(ﬂjﬂ(ﬂ—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j:(zn = 3,) o) £,(0) £, ()



Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn (x)fm (X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (%)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

4+

Vanishes for various boundary conditions
at x=a and x=b
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Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1



For additional information about Sturm-Liouville
equations, see Lectures 21,22,23
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PHY 711 — Homework # 27
Assigned: 11/13/2024  Due: 11/18/2024

Read Chapter 11 of Fetter and Walecka.

L

A cylindrical solid material with cylindrical radius a and length L and thermal diffu-
sivity & has a time-dependent cylindrically symmetric temperature profile T'(r, z.t).
In these cvlindrical coordinates, the material is contained within 0 < r < a and
0 < z < L. In the absense of external heating, the temperature profile is is well-

described by the equation of heat conduction

ar .
> = kVT.

At ¢t < 0, the material is prepared so that its temperature profile is given by

0 for r>a andfor z <0 z>L

T(rz,t<0)= { Acos(mzfL) for 0<r<a and 0<z< L,

where A is a given constant. The cvlindrical solid is placed in a thermally insulated
container so that its temperature is well-described by the boundary conditions

fi-VT(r,2,2)=0

at all of its surfaces. Find an expression for the temperature profile of this system

12/06/2024 T(mzt)fort>0.  puy 744 Fall 2024 -- Lecture 40
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The diffusion (or heat conduction) equation for the
temperature profile 7'(r,?):

oT
o
For cylindrical coordinates -- T'(r,?) =T (r, ¢, z,t)

= xV°T

and the diffusion equation takes the form:

aT , O, ,t 2 2 2
(F(DZ )ZK 8—24‘18"‘ 12 az_l_az T(V,(D,Z,t)
ot or- ror r°oQp 0z




Partial differential equation:
oT (r,p,z,t 21 2 2
(r:0:2 ):K 8—2+— 2 12 0 —+ 82 T(r,@,z,t)
ot or- ror rop oz
Assume separable form:  T'(r,,z,t) = R(r)®(9)Z(z) f (t)
In this particular case, the ¢ dependence i1s trivial, so that it

is reasonable to assume that T'(r,@,z,t) =T (r,z,t) = R(r)Z(2) f (¢)

@T(r,z,t) B df (1)
Then PR R(r)Z(z) ”
: ) ’ ,1d d°2(z)
VT (r,z,t)=Z(2) f(t)[drz = drjR(rHR(r)f ()=



Summary:
2 2
8T(r,z,t)_l{6 W 0 + aij(V,Z,t)
ot or’ ror oz
T(r,z,t) =R(r)Z(z) f (1)

6T(r,z,t) _ R(r)Z(z)m
ot

Then

d> 1d

VzT(I”,Z l‘) Z(Z)f(t)(_-l__d_]R(”)‘FR(l’)f(t)d Z(z)

Z(z)f(t)[—+ldin(r)+R(r)f(t)

Divide both sides of the equation by R(7)Z(z) f(¢)

L dfy_ (1 (d® 14 RO+ 1 d*Z(z)
f@) dt | R\ dr? T dr Z(z) dz’

R(MZ(z) df (t ) _ K[

d Z(z)j




Ldf@o_ (1 (d 1d R+ d’Z(z)
f(t) dt R\ dr’ rdr Z(z) dz°
Suppose d]; (;) =—Af(t) and dngz) =—a’Z(z2)

z

dr* rdr

and [d—z +lin(r) =—1°R(7)

where A, «, and u are real numbers.
This will work if A =x(a” + u°)



Solution of ordinary differential equation for the radial component:

d> 1d
—+ R(r)=0
(a’rz r dr H ] ()

Recall that the regular solution of the Bessel equation of order 0
is a solution of the differential equation:

(d—2+li+1jjo(x):0

dx®  x dx

Therefore, R(r)=CJ,(ur) where C 1s a constant

More generally, multiple solutions ¢, may be viable, in which case
the solution has the form R(r) = Z C J,(ur).



Satisfies the radial differential equation,
R(r)= ZCnJo(ﬂnr) but does not satisfy boundary conditions

Need to find i, and C .

For boundary value at » =a
dJO (/Llnr)

R IS & Nvasma]
dJ,(x,) _ o

Define 0
dx
X,
H, =—
a
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Note that the functions J,(u r) form a set of orthogonal functions

over the range 0 <r <a.

d*> 1d

—+t——+ J, (. r)=0

PRI ﬂn] o (4,7) =

2

d—+1i+uij<umr> 0

dr*  rdr
1d d 1d d
rdr dr rdr dr

(ﬂfi - U, )Jo (1,7)J o (14,,7)
If 4 = u , then the equality is trivial. If 4 # u , the integrating

both sides of the equation 0 <7 < a implies that

[ dr v, (u,r)J, (1,7 =0
0



Solution of ordinary differential equation for the z component:

2
——5 T * |Z(z) =0 with boundary values az =0 = az
dZ dZ i dZ .

krz

= Z(z) :Zk:Dk cos( 7

j where «, = an

In our case, because of the 1nitial conditions, only the £ =1 solution is present.
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Full general solution:

TZ

T(r,z,0)=Y. C,Jy(1,r)cos (T

|

2

r

2 '
where A =K(/¢f +Z j:/c[xz
a

PHY 711 Fall 2024 -- Lecture 40
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Finishing up --

I'(r,z,t)= ZCJ(,ur)co ( j 4 with A4, —K[,u +—

Attr=0, 0<r<a, 0<z<L

I (r,z,0)= Acos(ﬂLZj Z (,unr)cos(

12/06/2024 PHY 711 Fall 2024 -- Lecture 40
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Full general solution:
Tz

T(r,z,t)= ZCnJO (u,r)cos (Tj e

2
where A, = K‘(,uj +7Z—2j

J‘dl" rJO (ll’lnr)
and where C, = A~

[ ar r; (u,r)
0




Advice about problem solving such as coupled differential equations

A particle of mass m and charge ¢ is subjected to a vector potential A(r,t) = —(Eyct + Byx)z.
In this case, the scalar potential is zero: ®(r,t) = 0. (Note that we are using the cgs Gaussian
units of your text book.) Here E; denotes a constant electric field amplitude and B, denotes a
constant magnetic field amplitude. The initial particle position is r(t = 0) = 0 and the initial
particle velocity is ¥(t = 0) = 0.

a. Determine the Lagrangian L(x,vy, 2, &, v, 2,t) which describes the particle’s motion.
b. Write the Euler-Lagrange equations for this system.
c. Find and evaluate the constants of motion for this system.

d. Find the particle trajectories x(t), y(t), z(t) by solving the equations and imposing the given
initial conditions.

2. A particle of mass m and charge ¢ moves in three-dimensional space in the presence of a
constant electric field of strength £y and a constant magnetic field of strength By in cgs
Gaussian units. Initially, 2(t =0) =y(t =0) = z(t = 0) = 0 and
#(t=0) =5t =0) = 2(t = 0) = 0 The Lagrangian for this system in Cartesian coordinates

is given by
. Lo 1 .2 .2 .2 , q .
L(z,y,z.&,0,2) = oM (r +ut+ 2 ) +qEyz — = Byxz,
c

where ¢ denotes the speed of light in vacuum.

(a) Find the Hamiltonian of this system in canonical form.

(b) Using either the Hamiltonian or Lagrangian formalisms, find the equations of motion
for this system.

(¢) Solve the equations of motion using your knowledge of the initial values.

(d) Comment on whether or not your solution makes physical sense.

12/06/2024 PHY 711 Fall 2024 -- Lecture 40
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1
1. L(x,v,2,%,7,2)=—m(X" + y> +2°) — qgEctz —gBoxz'

2 C
1
2. L(x,y,z,x,y,2) = Em(ic2 +3y*+2°)+qE,z —gBoxz'
C

Initial conditions for both #1 and #2: r(¢) =0 and r(¢) =0

What can you say about these two cases?



Solution:

2(f) = E,c mc (1 cos(qBO D (1) = Eoc[ mc .

B, gB, mc

Do these solutions satisfy the equations?
Do these solutions satisfy the initial conditions?
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