PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 5 — Chap. 3&6(33) in F&W

Lagrangian mechanics

1. Lagrange’s equations in the presence of velocity
dependent potentials — such as obtained when a
charged particle moves in a magnetic field.

2. Effects of constraints
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Presenter Notes
Presentation Notes
This material follows your textbook in both Chapter 3 and Chapter 6(33).


Your questions —

From Thomas —

On slide 28 | am not sure how you combined the coupled
equations? On slide 31 | think there were some steps that were not
shown. | think | get what happened, but | would need to work it out.

From Julia --
Would there ever be a situation where it would make sense to find the
Lorentz force in non-Cartesian coordinates?

From Conall --
| am not understanding how we come to the conclusion on slide 11. |
was also looking through 6.33 in the book and am equally confused with

that.
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

N®| | ~|[W[N| =]

9/4/2024

Date F&W Topic HW
Mon, 8/26/2024 Introduction and overview #1
Wed, 8/28/2024 |Chap. 3(17) |Calculus of variation #2
Fri, 8/30/2024 |Chap. 3(17) |Calculus of variation #3
Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
Wed, 9/04/2024 |Chap. 3 & 6 [Lagrangian equations of motion #5
Fri, 9/06/2024 |Chap. 3 & 6 [Lagrangian equations of motion

Mon, 9/09/2024 |(Chap. 3 & 6 |Lagrangian to Hamiltonian formalism
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Presenter Notes
Presentation Notes
Here is the updated schedule.   Note that HW 5 which will be covered in today’s lecture will be due next Monday.


PHY 711 — Assignment #5
Assigned: 09/04/2024  Due: 09/09/2024

A particle of mass m and charge ¢ is subjected to a vector potential A(r,t) = —(Eyct + Byx)z.
In this case, the scalar potential is zero: ®(r,¢) = 0. (Note that we are using the cgs Gaussian
units of your text book.) Here Ej denotes a constant electric field amplitude and B, denotes a
constant magnetic field amplitude. The initial particle position is r(¢ = 0) = 0 and the initial
particle velocity is ©(t = 0) = 0.

a. Determine the Lagrangian L(x,y, z, @, y, 2,t) which describes the particle’s motion.
b. Write the Euler-Lagrange equations for this system.
c. Find and evaluate the constants of motion for this system.

d. Find the particle trajectories x(t), y(t), z(t) by solving the equations and imposing the given
initial conditions.
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Comment on single and multiple coordinates --

Hamilton's principle for optimization for a single trajectory g(z) :

S = t_‘CL(q, g,t)dt  where L(q,q,t) = Kinetic energy-Potential energy

Han:ilton's principle for optimization for a multiple trajectories {q_(?)}:

S = TL({% ¥.1q.}1,t)dt  where L({q_},1q. },t) = Kinetic energy-Potential energy
t

This "works" provided that the variation of each trajectory g_(¢) can be analyzed.

Note that the trajectory components can be independent
(as in the case of cartesian coordinates and/or multiple
particles or can be dependent in which case we can use
the “trick” of Lagrange multipliers.



Previously derived form for the Lagrangian --

s Generalized coordinates :
. e

8U5 Zdﬁ'T_(?T 5g. =0
dt 0q, 0q_

~ do(T-U) o(T-U) -
) _Z(dt o dq )5%_0

d oL OL
= D=4, =
>\ dtodq_  Oq

Note: Thisisonly true if

(e} qG o



Presenter Notes
Presentation Notes
Form of derived Lagrangian  provided that the potential does not depend on velocity.


s Generalized coordinates :
. e

Define -- Lagrangian: L=T-U

L=L(g, 14, }1)
d oL OL
_ma) = _Z[a’t 0 aq jg% =0

(o}

— Minimization integral : § = I L({g, },4d. )t

=>»Hamilton’s principle from the ‘backwards”
application of the Euler-Lagrange equations to

Define -- Lagrangian: L=T7T-U

L=L1({g,}:{4,})
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Presenter Notes
Presentation Notes
Having shown that the Euler-Lagrangian equations are consistent with Newton’s equations of motion, we can then infer that the integral of the Lagrangian is optimized as is consistent with Hamilton’s principle.    


.
Summary —

Hamilton’s principle:
Given the Lagrangian function: L =1L ({% } : {q’a },t) =T-U,
The physical trajectories of the generalized coordinates {qa (t)}
are those which minimize the action: S = I L({q,}.{d,}.t)dt
Euler-Lagrange equations:

d 0L OL d oL OL
Z —— q.=0 —=foreacho: — — -0
>\ dt aqa aq dt @q - @q

d c



Presenter Notes
Presentation Notes
Recipe for Lagrangian mechanics.


.

Note: in “proof” of Hamilton'’s principle:

d OL OL
— =( fi L =1L . _T_U
[ dt aqg an j or ({QG }9 {qg }, t)
It was necessary to assume that :
dau

— does not contribute to the result.
dt 0q_

— How can we represent velocity -dependent forces?

Why do we need velocity dependent forces?

a. Friction is sometimes represented as a velocity
dependent force. (difficult to treat with Lagrangian
mechanics.)

b. Lorentz force on a moving charged particle in the
presence of a magnetic field.


Presenter Notes
Presentation Notes
Important restriction.


Some details --

d oL OL
_ =0 for L=L g t,t)=T-U
iz 2 (10.}+fd. 1)
It was necessary to assume that:
i@_U does not contribute to the result.
dt 0q_
This comes from D'Alembert's analysis which gave us:
(F-ma)-ds=0=— 8_U5q0 —Z d 8?” _or 0q.,
> 0q_ —\dtoqg. Oq_

d oT o -U)
F-ma)-ds=0=— _
(F-ma)-ds Z[dt 5 og j&]"

o o

while we want to use: 0 = —Z(jt 8(2 _ 9D - 8(7(; —Y) ]5%
q, q

o o



.

Lorentz forces:
For particle of charge g in an electric field E(r, ¢) and magnetic field B(r,?) :

Lorentz force: F = q(E +Llvx B)

omponent.; r(l v x B : .
icn tﬁ se, 1t 1S cénvg 1eht t“o use cartesian coordinates
L= L(x,y,z,x,y,z,t) =7-U

T = %m(xz + 57 +Z-2) Note: I_-Iere we are using
cartesian coordinates for

x-component: (d alj—aLj: convenience.
dt ox Ox
oU d oU
Apparently: F =-— +
e
p Note: We need to
Answer: U=q®(r,t)—=i-A(r,t) orove this!
C

where E(r,t) =-VO (r,t) 1 5A(g;‘,t)
c

B(r,t)=VxA(r,t)


Presenter Notes
Presentation Notes
While Lagrangian mechanics cannot treat all velocity dependent forces,    it is possible to extend the analysis for the case of  the Lorentz force.     This material is treated in Chapter 6, Section 33 of your textbook.      We are following the textbook’s units of cgs Gaussian units.


More details --

Consider: 0= —Z( ;Zt 8(76; _ 9 _ ﬁ(g —Y) j5qa
95 q

o o

Suppose T = %m(;’cz +9° +27)

:O:(d a(T—U)_a(T—U)j: d . d (an+aU

FAY ox dt di\ ax ) ox
. d(&Uj oU
=> MX = ——=F
dr\ Ox ox
\ |
|

Can be used to represent Lorentz force.
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Units for electromagnetic fields and forces

cgs Gaussian units -- (as used your textbook)

E and B fields as related to vector and scalar potentials:
1 0A(r,1)

c Ot
Corresponding Lagrangian potential:

E(r,t)=-V®(r,t)- B(r,t)=VxA(r,¢)

i A(r,1)

U=q®(r,t)-=
c

Sl units --

E and B fields as related to vector and scalar potentials:
OA (r,1)

ot
Corresponding Lagrangian potential:
U=q®(r,t)—qr-A(r,z)
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E(r,t)=-V®(r,1)- B(r,/)=VxA(r,t¢)



.

Lorentz forces, continued:

x —component of Lorentz force: F. =¢ (Ex + (V X B)x )

Suppose: U = q(l)(r,t)—gi'-A(r,t)

c
Consider: F_ = _Y + d oY
Ox dt oOx

~ou _ od(r,?) q[.@Ax(r,t) .5Ay(l‘>f)

. 04, (r,t)J

— == +—=| x + +
ox 1 ox C ox Y ox ox
6_(.] = —zAx(r,t)
OX C
doU _ qdA(r)_ _g(@Ax(r,t)X+ éAx(r,t)er an(1~,¢)2.+ 0A4_(r,1)
dt Ox c dt c ox oy 0z ot
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Presenter Notes
Presentation Notes
Very clever mathematicians figured out how to incorporate Lorentz  into the Lagrangian formalism.    Here we are assuming their result and showing that it is consistent.


B
Lorentz forces, continued:

0A (r,¢ A
U__, 6CI)(r,t)+g . an(r,t)+y, r )+Z, 04, (r,¢)
ox Ox c ox ox ox )
\
doU _ _qfodlre). 8Ax(r,t)y+ 04,(r,1) . 04,(r,1)
dt Ox c Ox oy 0z ot )
F o= oU d oU
Ox dt ox
_ od(r, 1) e 04,(r,t) 04 (r,t) L4 [ 04 (r,1) o4,(r,1)) ¢ o4,(r.1)
1 Ox c Y Ox oy c Ox oy c Ot
__00(r,t) g d4,(r,2) L4 %4, (r,) 4. (r,¢) N Z,( 04,(r,t) 04, (r,t)j
1 Ox c Ot c Y Ox oy c Ox 0z
=qk (r,t)+ g(yBZ (r,t)— zB, (r,t))z qL (r,t)+ g(v X B(r,t))x
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Presenter Notes
Presentation Notes
More derivations.



®
Some details on last step:

o _ou N d oU
g Ox dt oOx
o o (r,¢) L4 04, (r,t) o4, (r,1) Ny 04, (r,t) o4, (r,2) g o4, (r,1)
- Ox cy ox oy cZ Ox oy c Ot
oD(r,t) ¢ 04, (r,t)+q (04, (r,t) 04, (r,¢) Ny o4, (r,t) 04, (r.t)
= — S - — -7z —
Ox c Ot c Y ox oy c Ox 0z
A
Note that: E(r,z)=-V® (r,t)—l o é:’t) B(r,r)=VxA(r,¢)
c
So that:
E.(rt) =qE, (r,0)+L(3B (r,)-zB, (r.1)) = ¢E, (r,t)+ L(vxB(r,1))
C C *

It follows that similar analyses can be applied to F, (r,) and F, (r,?).
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Presenter Notes
Presentation Notes
More derivations.



Lorentz forces, continued:
Summary of results (using cartesian coordinates)

L——L(x,y,z,)'c,j/,z',t)_——T—U
q .
Cr (r,t)
18A(r,t)
C Ot

T=im(¥+3°+2)  U=q®(r1)

where E(r,t)=-VO(r,) B(r,t)=VxA(r,t)

L=1tm(%*+7" +2*)—q0(r,t)+Li A(r,1)
C

Note that, more generally, U =U

mechanical

+U ..,

Uy = q®(r,0)—Li A(r,1)
C


Presenter Notes
Presentation Notes
Summary of results.


®
Example Lorentz force

L=1m(i+7 +2°)-q0(r,6)+ Li- Alr,z)
c

Suppose E(r,1)=0, B(r,t)= B,z

A(r,t) =L B,(~ yX + x¥)

L:%m(x2+)>2+Z'2)+2iBO(—5cy+j/x)

c

d 8L._6L =0 :i(mic—iBoyj—iBoy=0
dt ox Ox dt 2c 2c

4 0L oL _y :i(my'+130xj+i30x=o
dt oy Oy dt 2c 2c

d oL OL d

=0 ——mz=0
dt 0z 0z dt



Presenter Notes
Presentation Notes
Example for a  magnetic field in the z direction.


Example Lorentz force -- continued

LB (— sy +jx)

%(x+y—|—z) >

L=
d m)'c—iBOy = —B,y=0 :>mx—1Boy':O
dt 2¢C 2c c

ﬂw@+13ﬂ + L Bi=0 =mp+lBi=0
dt 2c 2c C

imz':O —=>mz=0
dt


Presenter Notes
Presentation Notes
Finding the Euler-Lagrange equations.


Example Lorentz force -- continued

L=1m(# +5 +z‘2)+2iBO(—5cy+y'x)
C
mi=+1B
C
mj}:—gBofc
C
mz =0

Note that same equations are obtained

from direct application of Newton's laws :

mr zil‘xBoi

C


Presenter Notes
Presentation Notes
Summary from previous slides.


®
Example Lorentz force -- continued

Evaluation of equations:

z t)—z +VOZt
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. q ., . _
mx——8,y =0 x(t) V sm( t+¢)
C
mi+L B i =0 y(t):l/()cos(%t+¢)
C
x(t) V COS( 95 {4 ¢) Note: 3 second order
differential equations
y(t) =y, + 2 <, Sm( 4By 4 o ¢) need 6 constants for
e specific solution.
!


Presenter Notes
Presentation Notes
We get the same motion for this case.


Some details
Evaluation of equations:

.. d(. gB . qB,
mi—LB =0 A 9B )g »i-9B,_k
C dt mc mc

d( . ¢gB, qB,
. . — | yp+—x =0 =>p+—Lx= K,
my+gBOx:0 dt 4 mc y mc
¢ d
. —z=0 = z=K
mz = () dr =%

How can you solve coupled differential equations?
How can you determine the constants K, K,, K;?



®
Example Lorentz force -- continued

Consider formulation with different Gauge: A (r)=-B,yx
L=5m (x +y°+z )—QBOXy
c
i(mic—gb’oyj—o :mx—gBO)'/:O
dt c C
D (mp)+ 2B =0 —mp+LB5=0
dt c C
imz’ =0 —>mz =0
dt

Does it surprise you that the same equations of motion are
obtained with a different Gauge?


Presenter Notes
Presentation Notes
This is the same magnetic field, but an equivalent vector potential.


How do these two different forms of A correspond to the
same B?

B(r,t)=VxA(r,t¢)
Consider A'(r,t) =A(r,t)+V/f(r,¢)
Note that VxA(r,t)=VxA'(r,¢)

1 A
In our case, A(r, t)=§BO (—yX+xy)

A'(r,t)=—B,yx
What is f (r,?)?



To Julia’s question about representing the electromagnetic
terms in “generalized” coordinates
z

Top view:

In this case, 1t 1s convenient to represent the

vector potential in cylindrical coordinates:

A(p,9,2) = f(p)@
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S
Now consider formulation of motion with constraints --

Comments on generalized coordinates:

L=L({g, Oh{4, O}ht)
d oL oL
dt 0g_ 0q

=0

(o}

Here we have assumed that the generalized coordinates
q, areindependent. Now consider the possibility that
the coordinates are related through constraint equations
of the form:

Lagrangian: L = L({qa (t)}, {q’a (1), t) Lagr.an_ge
Constraints: f, = f,({g, (t)},¢)=0 multipliers

d OL 8L Zl

dt Oq'a q, 5 6q6

=0

Modified Euler - Lagrange equations :


Presenter Notes
Presentation Notes
Shifting topics, we now consider examples where the generalized coordinates are related by some constraints.


Some details --

Lagrangian: L = L({qa (1) }, {q’a ) t)
Constraints: f, = f. ({g,(O)}t)=0

Modified Euler - Lagrange equations: d 6.L _ ok +Z =
dt aqa 8qo' J an

This amounts to modifying our optimization problem --
0S=0 andforeachi: of =0

= oW =0(S + Z A f.) =0, mtroducing the new constants 4.



Simple example:

L(u(t),u(t)) =L mi* + mgusin 0

. L(x,p.%,3) =tm(&* + 37 )- mgy
f(x,y)=sinf x+cosf y=0
Note that: u =xcos@ — ysiné
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Presenter Notes
Presentation Notes
Here is a simple example of an inclined plane.    If we were so silly as to treat the x and y motions separately, we would have use a constraint equation as shown.


Case 1:
L(u(t),u(t)) =L mu* + mgusin 6

d aL—aL:O:rmLi—nfzgsinH:O
dt ou Oou
Case 2:

1

L(x,y,%,9) =+m(& + 37 ) - mgy
f(x,y)=smnf x+cosf y=0

d@L_@L 8f =0=mx+ Asin@
dt Ox Ox 8x
d@L_@L 6f

=0=my+mg+ Acosb
dt 0y Oy ay y+mg

sinf x+cosf y=0

= A =—mg cos § {E—

(cos@ i —sinf j) = gsinf

9/4/2024 PHY 711 Fall 2024 -- Lecture 5

=i =gsinf

Which method would
you use to solve the
problem?

Case 1

Case 2

Force of constraint;
normal to incline

30


Presenter Notes
Presentation Notes
In this case we see that the constraint is related to the normal force which can be considered as a force of constraint.


Rational for Lagrange multipliers

Recall Hamilton's principle:

S = jL({qg(t)},{qa(t)},z)dt

f d oL oL
55 =0= j > - g |dt
\T\dtdq, 0q,

With constraints:  f, = f| ({% ()}, t) =0

Variations oq_ are no longer independent.

of
5;3:0:2%5% at each ¢

o)

— Add 0 to Euler-Lagrange equations in the form:

of .
>4, Y g,
J o qa


Presenter Notes
Presentation Notes
Here we  justify the use of Lagrange multipliers in a similar way that we used them when discussing the calculus of variation.


Euler-Lagrange equations with constraints:

Lagrangian: L = L({qa (1) }, {q’a (1), t)
Constraints: f, = f. ({qa (t)}, t) =0

Modified Euler - Lagrange equations : d é.L _ oL + Z =
dt aQO‘ 6QO‘ J 8QO'
Example:

Lagrangian: L = %m( 2 4 r26° )+ mgr cos
Constraints: f =r—£=0

mg
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Presenter Notes
Presentation Notes
Another example of constrained motion.


Example continued:

Lagrangian: L = m('2+r26’2)+mgr0059

L
2

Constraints: f =r—£=0

%m#—mr@z—mgcosé’+/1=0

imrzé +mgrsinf =0
dt

r=0=r r=>4
— :—%sinﬁ

— A=mlO*+mgcosh

9/4/2024 PHY 711 Fall 2024 -- Lecture 5
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Presenter Notes
Presentation Notes
Continued analysis of pendulum motion


Another example:
BRI, RS,

Lagrangian: L=1m/; +1m 05 +mgl +m,gl,
Constraints: f=/0,+(,—(=0

. d .
1B —ml, —mo+A=0
g ;l T g 18
L y .
1 “rl I Jll %ngz—ng-F/l:O
:= ‘ Figure 19.1 Atwmd':m:chint.zl_l_zzzozzl_l_zz
NP 2mm, o
m, +m,
=iy =
m, +m,
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Presenter Notes
Presentation Notes
Example of Atwood’s machine with two masses and a pulley.
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