PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion of Lecture 6 -- Chap. 3 & 6 (F &W)

Details and extensions of Lagrangian mechanics

1. More about constraints and Lagrange multipliers.
2. Constants of the motion

3. Conserved quantities
4.

Legendre transformations
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Presenter Notes
Presentation Notes
In this lecture we will continue to explore the mathematical and physical properties of the Lagrangian formalism.


Your questions

From Thomas —
On slide 15 should it be p*2/mr*4? On slide 31 was defining the
Hamiltonian using that summation a guess or how did we come up

with that?

From Julia -
Are there any tips for deciding when to apply the change of

variables?
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

O oND| | &~[W/IN| =

Date F&W Topic HW
Mon, 8/26/2024 Introduction and overview #1
Wed, 8/28/2024 |Chap. 3(17) |Calculus of variation #2
Fri, 8/30/2024 |Chap. 3(17) |Calculus of variation #3
Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
Wed, 9/04/2024 |Chap. 3 & 6 [Lagrangian equations of motion #5
Fri, 9/06/2024 |Chap. 3 & 6 [Lagrangian equations of motion #6
Mon, 9/09/2024 |Chap. 3 & 6/|Lagrangian to Hamiltonian formalism
Wed, 9/11/2024 |Chap. 3 & 6 |Phase space

Fri, 9/13/2024 |Chap. 3 & 6 (Canonical Transformations

9/6/2024

PHY 711 Fall 2024 -- Lecture 6




PHY 711 -- Assignment #6

Assigned: 9/06/2024 Due: 9/09/2024

0

a. The figure above shows a box of mass m sliding on the frictionless surface of an inclined plane (angle 8). The
inclined plane itself has a mass M and is supported on a horizontal frictionless surface. Write down the
Lagrangian for this system in terms of the generalized coordinates X and s and the fixed constants of the
system (8, m, M, and g) and determine the equations of motion. (Note that X and s represent the lengths of
vectors whose directions are related by the angle 6.)

b. Assume that initially positions X(t=0)=0, s(t=0)=0 and that their corresponding velocities are also 0. Find the
trajectories X(t) and s(t) for t > 0.
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Q:rom previous lecture -- motion with constraints --

Comments on generalized coordinates: [ =L({g_(1)},{4.(0)},¢)

d oL OL
Here we have assumed that the dt 8g 0q

generalized coordinates

q, areindependent. Now
consider the possibility that the
coordinates are related through
constraint equations of the form:

=0

o)

Lagrangian: L= L({% (t)}, {q‘a (t)}, t) Lag|;ar|1_ge
Constraints: f, = fj({% (t)},t): multphers

d OL 8L Zl

dt Oq'a q, 5 6q6

Modified Euler - Lagrange equations : =0


Presenter Notes
Presentation Notes
Shifting topics, we now consider examples where the generalized coordinates are related by some constraints.


Some details --

Lagrangian: L = L({qa (1) }, {q’a ) t)
Constraints: f, = f. ({g,(O)}t)=0

Modified Euler - Lagrange equations: d 6.L _ ok +Z =
dt aqa 8qo' J an

This amounts to modifying our optimization problem --
0S=0 andforeachi: of =0

= oW =0(S + Z A f.) =0, mtroducing the new constants 4.



Simple example:

L(u(t),u(t)) =L mi* + mgusin 0

. L(x,p.%,3) =tm(&* + 37 )- mgy
f(x,y)=sinf x+cosf y=0
Note that: u =xcos@ — ysiné
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Presenter Notes
Presentation Notes
Here is a simple example of an inclined plane.    If we were so silly as to treat the x and y motions separately, we would have use a constraint equation as shown.


Case 1:
L(u(t),u(t)) =L mu* + mgusin 6

d aL—aL:O:rmLi—nfzgsinH:O
dt ou Oou
Case 2:

1

L(x,y,%,9) =+m(& + 37 ) - mgy
f(x,y)=smnf x+cosf y=0

d@L_@L 8f =0=mx+ Asin@
dt Ox Ox 8x
d@L_@L 6f

=0=my+mg+ Acosb
dt 0y Oy ay y+mg

sinf x+cosf y=0

= A =—mg cos § {E—

(cos@ i —sinf j) = gsinf
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=i =gsinf

Which method would
you use to solve the
problem?

Case 1

Case 2

Force of constraint;
normal to incline


Presenter Notes
Presentation Notes
In this case we see that the constraint is related to the normal force which can be considered as a force of constraint.


Rational for Lagrange multipliers

Recall Hamilton's principle:

S = jL({qg(t)},{qa(t)},z)dt

f d oL oL
55 =0= j > - g |dt
\T\dtdq, 0q,

With constraints:  f, = f| ({% ()}, t) =0

Variations oq_ are no longer independent.

of
5;3:0:2%5% at each ¢

o)

— Add 0 to Euler-Lagrange equations in the form:

of .
>4, Y g,
J o qa


Presenter Notes
Presentation Notes
Here we  justify the use of Lagrange multipliers in a similar way that we used them when discussing the calculus of variation.


®
Example --

Euler-Lagrange equations with constraints:

Lagrangian: L = L({g, ()},{g,(1)}?)
Constraints: f, = f. ({g,(H)}t)=0

Modified Euler - Lagrange equations: d é.L _ ok +Z =
dt aqG aQo' J an

Example:
Lagrangian: L = %m(2 +126° )+ mgr cos @
Constraints: f =r—£=0

mg
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Presenter Notes
Presentation Notes
Another example of constrained motion.


Example continued:

Lagrangian: L = m('2+r26’2)+mgr0059

L
2

Constraints: f =r—£=0

%m#—mréz —mgcosfd+A1=0

imrzé +mgrsinf =0
dt

r=0=r r=>4
— :—%siné’

— A=mlO*+mgcosh
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Presenter Notes
Presentation Notes
Continued analysis of pendulum motion


Another example:
BRI, RS,

Lagrangian: L=1m/; +1m 05 +mgl +m,gl,
Constraints: f=/0,+(,—(=0

. d .
1B —ml, —mo+A=0
g ;l T g 18
L y .
1 “rl I Jll %ngz—ng-F/l:O
:= ‘ Figure 19.1 Atwmd':m:chint.zl_l_zzzozzl_l_zz
NP 2mm, o
m, +m,
=iy =
m, +m,
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Presenter Notes
Presentation Notes
Example of Atwood’s machine with two masses and a pulley.


Summary of Lagrangian formalism (without constraints)

For independent generalized coordinates ¢_(¢):

L=L({q,(0}.{¢,®)} 1)

d oL JOL _ 0
dt 0q_ 0q_
Note that if oL =0, then i&_L =0
0q. dt 0q_
oL
— —— = (constant)

0q..


Presenter Notes
Presentation Notes
Review of the Euler-Lagrange equations with a focus on finding constants of the motion.


Comment -- Note that in deriving these equations we have
assumed that there are only conservative forces (no friction)
acting on this system. The equations are easily modified to
take constraints, including those from static friction, into
account. What is harder to treat is dynamic friction which is
typically modeled by velocity dependent dissipative forces.
However, some tricks for this have been developed such as
described in the textbook by Herbert Goldstein.



Examples of constants of the motion:

Example 1: one-dimensional potential:

L=im(&+3" +2)-V(z)

2
d . .

— = mx =0 — mx = p_ (constant)
d . .

= Emy =0 — my = p, (constant)
d . oV

= —mzZ=——

dt Oz


Presenter Notes
Presentation Notes
Simple example.


Examples of constants of the motion:

Example 2: Motion 1n a central potential
L= %m(fz +r20* ) -V(r)
d

= Emrzé =0 = mr’0 = p, (constant)
2
— im# = mro> —@—V = p‘93 i
dt or mr> Oor

Note that

2

b=Lo i :mr( Py

2
mr mr

T


Presenter Notes
Presentation Notes
Another example using different coordinates.


Recall alternative form of Euler-Lagrange equations:
Starting from:

L=L({g,0}.{4,(0}.1)

d oL oL 0

dt 0q. 0q_

Also note that: — Z Za—Lq +—
a’t 8q6 oq,,


Presenter Notes
Presentation Notes
Reviewing “alternative” form of Euler-Lagrange equations.


Additional constant of the motion:

ot
d OL oL
thenn. —|L—-) —q |=—=0
dt ( ~ 04, “J ot

L
= L - Z(j—qa =—F (constant)
o 04,

Examplel: one-dimensional potential :
L=1im(&+37+2)-V(2)

d
dt
= —(%m()'cz + 97427 )+ V(z))z —F (constant)

For this case, we also have mx=p_ andmy=p,

= (%m(x2 + 37 +Z'2)— V(z)—mx* —my’ —mz'z): 0

2
~E=P D +imz’ +V(z)
2m  2m


Presenter Notes
Presentation Notes
New constant of the motion found from the Lagrangian analysis.


Summary from previous slide

L= %M(fcz + 77+ Z'z)— Vi(z) = 3 variable functions
2

2
E=2Lx | Py +imz*+V(z) p.,p,,E constant
2m 2m g

=» 1 variable function

Why might this be useful?



Additional constant of the motion -- continued:

it %o,
Ot
d OL . oL
then: —| L—-) —q_ =0
dt[ = 04 j ot
= L - a—.ng =—F (constant)
> 04,

Example 2: Motion in a central potential

L :%m(fz +r26’2)—V(r)
d 1 2 A2 ) 292\

:dt( (r +r0 ) V(ry—mr-—mr-6 )—0

= —(Em(z?2 + 716’ ) + V(r)) =—F (constant)
For this case, we also have mr*0 = p,

=» 2 variable functions

pe
2mr?

= E=—"—+1mi*+V(r) 1 variable function


Presenter Notes
Presentation Notes
Another example.


@Other examples

L:%m(jc2 +)>2+Z'2)+
oL .
—=0 —=>mz=p,
Oz
oL
E = 7 — L
25,5

:m()'c2+)'/2+2'2)+

q

2C
(

q

2c

B, (—)'cy + j/x)

constant)

B, (—)'cy + j/x)


Presenter Notes
Presentation Notes
Non-trivial example with constant magnetic field.


%ther examples

9/6/2024

L= %m(x2 +y° +2 )—gBOxy
c

L
oL =0 —> mz = p_ (constant)
0z

L
oL =0 = mx = p_ (constant)
Ox

6q0

:m()'c2+j/2+z' ) quy

—%m(x2+y'2+z'2)+%30xy
2 2
P | P:
2m  2m

= E=1my’ +
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Presenter Notes
Presentation Notes
Another example with a constant magnetic field.


@_agrangian picture

For independent generalized coordinates ¢_(7):

L=L({q,®}.{¢,(n)}.1)
d oL oL
dt 0q_. 0q.

— Second order differential equations for g_(¢)

=0

Switching variables — Legendre transformation


Presenter Notes
Presentation Notes
Noting that the Lagrangian analysis generally results in second order differential equations.      We now explore the possibility of alternative formulations.


Mathematical transformations for continuous functions of
several variables & Legendre transforms:

Simple change of variables:
z(x,y) < x(y,2)?7?

z(x,y) = dz—(azj dx 4 oz dy
OxX oy ).

x(y,z) = dx-(ﬁxj dy (?j dz
(
(

Assuming dz=0.



Presenter Notes
Presentation Notes
Digression on relationships between alternative coordinate formulations.


Note on notation for partial derivatives

z(x,y) = dz= oz dx
ox ),

A

hold y fixed.
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hold x fixed.

25



Simple change of variables -- continued:

z(x,y) = dz = (%j dx + (%) dy
Y X

Ox

Oy

@j dz

i (@cj ]
— | = | =
Oz ’ (82/8x)y
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Presenter Notes
Presentation Notes
Relationships for changing variables   of  general functionsl


>
Simple change of variables -- continued:

Example: z(x,y) = dZ:(%j dx+(2—zj dy
z(x,y) =€+ Xy i
)c(y,z)z(lnz—y)l/2 x(y,z) = dx=(@j dy+(a—xj dz
oy ). 0z ),
x) ? (0z/0y), (axj 2 1
ay (621 ox), 6z), (0z/ax),
1 VAR S 1 v o1

— 2 1/2 24

2(lnz — y)l/2 2xe" ™Y 22(1112 — y) 2xe”


Presenter Notes
Presentation Notes
Some examples.


Now that we see that these transformations are
possible, we should ask the question why we
might want to do this?

An example comes from thermodynamics where
we have various interdependent variables such
as temperature T, pressure P, volume V, etc.
etc. Often a measurable property can be
specified as a function of two of those, while the
other variables are also dependent on those two.
For example we might specify T and P while the
volume will be V(T,P).  Or we might specify T
and V while the pressure will be P(T,V).



Other examples from thermo --
For thermodynamic functions:

Internalenergy: U =U(S,V)
dU =TdS — PdV

dU:(@_Uj d5+(@_‘fj av
oS ), ov ),

oS ), ov ),

Enthalpy: H=H(S,P)=U+PV

dH=dU+PdV+VdP:TdS+VdP=(Z—§j dS+(6—Hj dP
P S

OP
oS ), oP ).


Presenter Notes
Presentation Notes
Examples from thermodynamic functions


Name Potential Differential Form
Internal energy E(S,V,N) dE =TdS — PdV + pdN
1 P 1L

Entropy E,V,N dS = =dE + —=dV — =dN

ntropy S( , V) S —dE + = V =
Enthalpy H(S,P.N)=E+ PV | dH =TdS + VdP + pdN
Helmholtz free energy | F(T,V,N)=E - TS | dF = —-SdT — PdV + pdN
Gibbs free energy G(T,P,N)=F+ PV | dG = —-SdT +VdP + pdN
Landau potential AT, V,u)=F —uN | dQ)=—-8SdT — PdV — Ndu
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Presenter Notes
Presentation Notes
Common thermodynamic energy functiosn.


Mathematical transformations for continuous functions of

several variables egendr transforms continued:
z(x,y) = dz=| — dx+( 7

Let uz(—j and vz[—j
ox ), oy ).

Define new function

dw=dz — udx xdu = 74 +vdy — 74 xdu
(awj ((%v) (az]
—  — = —X S = || — =YV
ou ), oy ), \ay ).
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Presenter Notes
Presentation Notes
Relationships between the old and new variables.


Lagrangian picture
For independent generalized coordinates g_(%):

L=L({g, O} {g, O}¢)
d oL oL
dt 0. 0q.

= Second order differential equations for g_ ()

=0

Switching variables — Legendre transformation

Define:  H =H({g, ()} {p,(0)}1)

L
H:Zq'o,pa—L wherep0=§7

. . 0oL oL ,. | oL
dH = Z(%dpa + p,dq, —ﬁdqa —ﬁdqa)—gdf


Presenter Notes
Presentation Notes
Applying the ideas of variable change to the Lagrangian formulation.


Hamiltonian picture — continued

H=H({g, O} {p, 0O}1)

H:anpa_L where p0=a—,L
> aq.,
oL oL oL
dH = g dp +p dg —dg - di |-t
Z,[qa R qa) >
— (8—qua+aﬂdp6]+a—l{dt
~\ 0q_ op., Ot
_ . _oH oL d oL .  O0H aL
T . oq. di 0g. ° oq. ot
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Presenter Notes
Presentation Notes
Transforming from the Lagrangian to Hamiltonian formulation of mechanics.      We will continue this discussion on Friday.
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