PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 9 -- Chap. 6 (F & W)
Extensions of Hamiltonian formalism

1. Virial theorem
2. Canonical transformations

3. Hamilton-Jdacobi formalism
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Presenter Notes
Presentation Notes
In this lecture we will discuss a variety of identities and methods and historically important ideas related to Hamiltonian and Lagrangian mechanics.


Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Topic HW

1 |[Mon, 8/26/2024 Introduction and overview #1
2 Wed, 8/28/2024 Chap. 3(17)|Calculus of variation #2
3 |Fr, 8/30/2024 |Chap. 3(17)|Calculus of variation #3
4 Mon, 9/02/2024 |Chap. 3 Lagrangian equations of motion #4
5 |Wed, 9/04/2024 |Chap. 3 & 6 Lagrangian equations of motion #5
6 |Fri, 9/06/2024 |Chap. 3 & 6 Lagrangian equations of motion #6
7 Mon, 9/09/2024 |Chap. 3 & 6 |Lagrangian to Hamiltonian formalism [#/
8 Wed, 9/11/2024 |Chap. 3 & 6 |Phase space #8
9 Fri, 9/13/2024 |Chap. 3 & 6|Canonical Transformations

10 Mon, 9/16/2024 |Chap. 5 Dynamics of rigid bodies
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Note that the schedule shows that this lecture will wrap up Chapters 3 and 6. On Monday we will start discussing Chap. 5 and apply Lagrangian and Hamiltonian mechanics to “rigid” bodies.


®
Virial theorem (Rudolf Clausius ~ 1870)

2T) = —<Z F, -r0>
Proof:
Define: 4= Zpg ‘T

%:Z(pa'ra_FPJ°ta):ZFG.r0+2T
’ ’ Because p,=F
a YF -r )+2(T)
dt o) o)
7 Note that this

<d_A> B lj dA(t) g A(7)—-A(0) N 0« implies that the
dt dt T motion is periodic
When it is or bounded (not

.
frye —— = <ZF0 '1‘a> + 2<T> =0 for all systems).

0
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The “virial theorem” is a useful identity for studying some mechanical systems.


Examples of the Virial Theorem  2(T) —< F, -r0>
Harmonic oscillator: ‘ 7 ‘
B . 1, o\ 1, 9
F = —kxx T—me <mx >—<kx >
Check: for x(r)=X sin(\/Et + aj
m
-2 2 2 k 1 2
<2T>= <mx >:kX <cos [\/:t+aj> =—kX
m 2

_<ZUZFJ.1-U><]ocz>:ld(2<sin2£\/%t+a]>=%k)(2

Premise true because of periodicity.
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Examples.


Examples of the Virial Theorem  2(T)=—(>F_-r
Circular orbit due to gravitational field l 0

of massive object:

F:—Gﬁfmf‘ Tzlmv2 <mv2>=<
r 2
2
Check: for Yo G]y = <mv
r v

W

centripetal gravitational
acceleration ~ force

Premise true because of periodicity.
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Another example.


Hamiltonian formalism and the canonical equations of
motion:

H=H({g, 0O} {p,)}ht)

Canonical equations of motion

dq, OH
dt  op.
dp,  OH
it~ oq

In the next slides we will consider finding different coordinates
and momenta that can also describe the system. \Why?
a. Because we can

b. Because it might be useful
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Review for a general Hamiltonian system.     The question is  what would happen if we change coordinates?


®
Notion of “Canonical” generalized coordinate transformations

Note that because

_qa({Ql Qn}’{})lth}’t) for each o of the way we set up
the problem we can

_pa({Ql Qn},{Pan},t) for each o always add such a
term.

For some H and F,  using Legendre transformations

3 pdo~ (0.0, 0) = S 00~ A(101R0)+ S ({0} (0.1

Apply Hamilton's principle:

5?@”090—ﬁ({Qa},{f;},r)%F({qa},{Qa},t)}h=0
o[ r (bt =[] oo to. )0
=5F(tf)—5F(tl.):O and nggg PU:—%
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Thinking about changing the coordinates – indicated with lower case and larger case symbols.


Some details --
Apply Hamilton's principle:

[ R0 -Al@ ) n )+ 4 r(la )0 -0

j{Z(&%Qg 50, Q ag ﬂdt

TPU(SQadr = ij{d(P“CSQ”) ~P50, }dt = —I P50, dt

dt




B
Some details --

—%({Ql Qn},{}’l---};},t) for each o
:Pa({Ql'”Qn}»{R'”Ba}’t) for each o

For some H and F,  using Legendre transformations

S pod, = H({0,}-(p.} )= Z RO, ~A(10,).1B 1)+ F (1, 1[0,

Action integral:

S= Id{ZPa% H({g,}.{p.}, )j
55:{&[2(

ODq, +p05ég)—5ﬂ({%}»{%}»1)]

(o}

Note that 5jidt(dF(t)j jd (‘MF@))
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Some details.


o Some relations between old and new variables:

i dt
%F({q Lo }J)=Zal([§ijq +[§EFGJQJ %_f
=S {Gertwsinsa-
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More details.
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Relationship between new Hamiltonian and original Hamiltonian.


Note that it is conceivable that if we were extraordinarily
clever, we could find all of the constants of the motion!

o = p -9
OP. 00
Suppose : Qazaﬂ—o and P ——ﬂ_o
oP. 00,

= Q_,P  areconstants of the motion

Possible solution — Hamilton-Jacobi theory:

Suppose:  F(ig, 10, 1) = —ZPQ +S(g, 1P, }.1)
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Focusing  on  finding the constants of motion.


.

2204~ H (4, ) po 1) =
320, - (101104 - 3.0, +5((a. 12, 1)

oL PL0)-T PO, +z[§75q-g+a—saj+@—s

OP, ot
Solution :
oS oS
Po = oq._ Qo = OP.

(10,12 h)= il o)+ S
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Deriving equations  for identifying constants of motion.


2 When the dust clears:

Assume {QG }, {PG }, H are constants; choose H =0
Need to find S({g_},{P. },?)
oS oS

oq. C=

il

Note: Sis the "action'”

Zpgqa

>R, - ;g/ )2 ;I/QUOW({% yan)

Ps =
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Details of derivation.


/////////
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More details.


Differential equation for S:

{22

2
Example: H({q}, {p},t):é)—er%ma)zqz

Hamilton - Jacobi Eq: H ({q},{a—s},tj 9 =0

oq ot
| @S 1 oS 0 Does this look
+—mw’q° +— = -
om\ oq 7 q’ Py familiar?

Assume:  S(q,t)=W(q)— Et (£ constant)
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Hamilton-Jacobi using harmonic oscillator example.


Continued:

2
L |95 +lmw2q2+a—S=0
2m\ Oq 2 ot

Assume:  S(q,t)=W(q)— Et

2

2m\ dg 2
aw = \/2mE —(mw)2q2
dq

W(q) = j \/ 2mE —(mw) q* dq

(£ constant)
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Hamilton-Jacobi equations for harmonic oscillator.


Continued:

W(q) = [2mE - (mo) ¢*dg

:lq\/ZmE—(ma))zqr2 +£sin1( med j+C

2 1, \2mE

E .
S(q,E,t):%q\/2mE—(ma))2q2 +—sIin 1( e j—Et

@ \N2mE
© _Q=lsinl( med j—t

8_E - 0, \N2mE
= q(t) = 2mE sin(a)(t + Q))

mao
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Continued.


Another example of Hamilton Jacobi equations
2

Example: H({y},{p},t):éj—ermgy

Assume y(0) = 4; p(0)=0

Hamilton-Jacobi Eq: H({y} 4 — >,t] +—=0

1 (oS oS
+mgy+—=0
2m\ Oy ot

Assume: S(y,t) =W (y)— Et (£ constant)
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Another example of using the Hamilton-Jacobi equations.


® p2
Example: H({y},{p},t):—ergy

2m
Assume y(0) = A; p(0)=0
2
1 [ dW
+mgy = E =mgh
Zm( dy j & S

3/2

W(y)= mj\/Zgh y')dy' ——mrh y)

3/2

S(y,t) = W(y) Et = —m\/ h y — mght
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Continued.


Check action:
1

For this case: y(t)=h— 5 gt’
(1 ., T
S:j(—my —mgyjdt'z—mgt — mght
"\ 2 3

3/2

S(y,t)=W(y)—Et = %m@(k —y) — mght

Agrees with Hamilton-Jacobi analysis.
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More details.


Alternatively, keeping £ notation:

W(y)= _}f\/ZmE—2m2gy'dy'

_\/ZL(E mgy)”
m g

S(y,t):W(y)—Et:\/?32 (E mgy)3/2—Et
g

@S 2 1 1/2
——(E - —t
OF == m g( mgy)

In our case, =0
E 0

|
= y(t)=—-—g(t+0) E = mgh
mg 2




What do you think of Hamilton-Jacobi method
a. Historically important
b. Hysterical
c. Painful
d. Might be useful

The next 3 slides contain important equations that you will
hopefully remember for this material contained in Chapters
3 & 6 of Fetter and Walecka. = On Monday we will start
with Chapter 5 and discuss one of the many applications of
these ideas — the case of rigid body motion.



Recap --

Lagrangian picture
For independent generalized coordinates g _(¢):
d oL OL
dt 0q_. 0Oq

= Second order differential equations for g_ (¢)

=0

o)

Hamiltonian picture
H=H({q,0}.{p, (0} .1)
dg, OH dp,  OH

o

dt  0Op, dt oq._

— Coupled first order differential equations for
q,(t) and p,(?)
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Summary of what we have learned.


General treatment of particle of mass m and charge ¢ moving

in 3 dimensions in an potential U (r) as well as electromagnetic

scalar and vector potentials @(r,7) and A(r,¢):

Lagrangian: L(r,i‘,t)Z%ml"2 ~U(r)—q®(r,t)+ 9. A(r,t)
c
Hamiltonian:  p= 8_L = mr + QA(r,t)
or C
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More summary.


Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function: L= L({g_(H)},{g.()},?)

: L
2. Compute generalized momenta: p_ = 8_

oq ..
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H ({qa (t)}, { D. (t)}, t)
5. Analyze canonical equations of motion :
dq OH dp,  OH

O

dt ~ op. it~ oq_
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Recipe to remember.
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