

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes on Lecture 9 -- Chap. 6 (F & W) Extensions of Hamiltonian formalism

- 1. Virial theorem
- 2. Canonical transformations
- 3. Hamilton-Jacobi formalism

Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

	Date	F&W	Topic	HW
1	Mon, 8/26/2024		Introduction and overview	<u>#1</u>
2	Wed, 8/28/2024	Chap. 3(17)	Calculus of variation	<u>#2</u>
3	Fri, 8/30/2024	Chap. 3(17)	Calculus of variation	<u>#3</u>
4	Mon, 9/02/2024	Chap. 3	Lagrangian equations of motion	<u>#4</u>
5	Wed, 9/04/2024	Chap. 3 & 6	Lagrangian equations of motion	<u>#5</u>
6	Fri, 9/06/2024	Chap. 3 & 6	Lagrangian equations of motion	<u>#6</u>
7	Mon, 9/09/2024	Chap. 3 & 6	Lagrangian to Hamiltonian formalism	<u>#7</u>
8	Wed, 9/11/2024	Chap. 3 & 6	Phase space	<u>#8</u>
9	Fri, 9/13/2024	Chap. 3 & 6	Canonical Transformations	
10	Mon, 9/16/2024	Chap. 5	Dynamics of rigid bodies	

Virial theorem (Rudolf Clausius ~ 1870)

$$2\langle T \rangle = -\left\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \right\rangle$$

Proof:

Define:
$$A \equiv \sum_{\sigma} \mathbf{p}_{\sigma} \cdot \mathbf{r}_{\sigma}$$

$$\frac{dA}{dt} = \sum_{\sigma} (\dot{\mathbf{p}}_{\sigma} \cdot \mathbf{r}_{\sigma} + \mathbf{p}_{\sigma} \cdot \dot{\mathbf{r}}_{\sigma}) = \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} + 2T$$
Because

$$\left\langle \frac{dA}{dt} \right\rangle = \left\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \right\rangle + 2 \left\langle T \right\rangle$$

$$\left\langle \frac{dA}{dt} \right\rangle = \frac{1}{\tau} \int_{0}^{\tau} \frac{dA(t)}{dt} dt = \frac{A(\tau) - A(0)}{\tau} \Rightarrow 0$$

When it is true -
$$\Rightarrow \left\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \right\rangle + 2 \left\langle T \right\rangle = 0$$

 $\dot{\mathbf{p}}_{\sigma} = \mathbf{F}_{\sigma}$

Note that this implies that the motion is periodic or bounded (not for all systems).

Examples of the Virial Theorem

Harmonic oscillator:

$$\mathbf{F} = -kx\hat{\mathbf{x}} \qquad T = \frac{1}{2}m\dot{x}^2 \qquad \left\langle m\dot{x}^2 \right\rangle = \left\langle kx^2 \right\rangle$$

$$2\langle T\rangle = -\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \rangle$$
$$\langle m\dot{x}^{2}\rangle = \langle kx^{2}\rangle$$

Check: for
$$x(t) = X \sin\left(\sqrt{\frac{k}{m}}t + \alpha\right)$$

$$\langle 2T \rangle = \langle m\dot{x}^2 \rangle = kX^2 \left\langle \cos^2\left(\sqrt{\frac{k}{m}}t + \alpha\right) \right\rangle = \frac{1}{2}kX^2$$

$$-\left\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \right\rangle = \left\langle kx^2 \right\rangle = kX^2 \left\langle \sin^2\left(\sqrt{\frac{k}{m}}t + \alpha\right) \right\rangle = \frac{1}{2}kX^2$$

Examples of the Virial Theorem

$$2\langle T \rangle = -\left\langle \sum_{\sigma} \mathbf{F}_{\sigma} \cdot \mathbf{r}_{\sigma} \right\rangle$$

Circular orbit due to gravitational field

of massive object:

$$\mathbf{F} = -\frac{GMm}{r^2}\hat{\mathbf{r}} \qquad T = \frac{1}{2}mv^2$$

$$T = \frac{1}{2}mv^2$$

$$\langle mv^2 \rangle = \left\langle \frac{GMm}{r} \right\rangle$$

Check: for
$$\frac{v^2}{r} = \frac{GM}{r^2}$$

$$\Rightarrow \left\langle mv^2 \right\rangle = \left\langle \frac{GMm}{r} \right\rangle$$

centripetal acceleration gravitational force

Premise true because of periodicity.

Hamiltonian formalism and the canonical equations of motion:

$$H = H(\lbrace q_{\sigma}(t)\rbrace, \lbrace p_{\sigma}(t)\rbrace, t)$$

Canonical equations of motion

$$\frac{dq_{\sigma}}{dt} = \frac{\partial H}{\partial p_{\sigma}}$$

$$\frac{dp_{\sigma}}{dt} = -\frac{\partial H}{\partial q_{\sigma}}$$

In the next slides we will consider finding different coordinates and momenta that can also describe the system. Why?

- a. Because we can
- b. Because it might be useful

Notion of "Canonical" generalized coordinate transformations

$$q_{\sigma} = q_{\sigma}(\lbrace Q_{1} \cdots Q_{n} \rbrace, \lbrace P_{1} \cdots P_{n} \rbrace, t)$$

for each σ

$$p_{\sigma} = p_{\sigma}(\{Q_1 \cdots Q_n\}, \{P_1 \cdots P_n\}, t)$$

for each σ

For some \tilde{H} and F, using Legendre transformations

Note that because of the way we set up the problem we can always add such a term.

$$\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\lbrace q_{\sigma} \rbrace, \lbrace p_{\sigma} \rbrace, t) = \sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \tilde{H}(\lbrace Q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) + \frac{d}{dt} F(\lbrace q_{\sigma} \rbrace, \lbrace Q_{\sigma} \rbrace, t)$$

Apply Hamilton's principle:

$$\delta \int_{t_{i}}^{t_{f}} \left[\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \tilde{H}(\{Q_{\sigma}\}, \{P_{\sigma}\}, t) + \frac{d}{dt} F(\{q_{\sigma}\}, \{Q_{\sigma}\}, t) \right] dt = 0$$

$$\delta \int_{t_{i}}^{t_{f}} \left[\frac{d}{dt} F(\lbrace q_{\sigma} \rbrace, \lbrace Q_{\sigma} \rbrace, t) \right] dt = \int_{t_{i}}^{t_{f}} \left[\frac{d}{dt} \delta F(\lbrace q_{\sigma} \rbrace, \lbrace Q_{\sigma} \rbrace, t) \right] dt$$

$$= \delta F(t_f) - \delta F(t_i) = 0 \quad \text{and} \quad \dot{Q}_{\sigma} = \frac{\partial H}{\partial P_{\sigma}}$$
PHY 711 Fall 2024-- Lecture 9

$$\dot{P}_{\sigma} = -\frac{\partial \tilde{H}}{\partial Q_{\sigma}}$$

Some details --

Apply Hamilton's principle:

$$\delta \int_{t_{i}}^{t_{f}} \left[\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \tilde{H} \left(\left\{ Q_{\sigma} \right\}, \left\{ P_{\sigma} \right\}, t \right) + \frac{d}{dt} F \left(\left\{ q_{\sigma} \right\}, \left\{ Q_{\sigma} \right\}, t \right) \right] dt = 0$$

$$\delta \int_{t_{i}}^{t_{f}} \left[\frac{d}{dt} F \left(\left\{ q_{\sigma} \right\}, \left\{ Q_{\sigma} \right\}, t \right) \right] dt = \int_{t_{i}}^{t_{f}} \left[\frac{d}{dt} \delta F \left(\left\{ q_{\sigma} \right\}, \left\{ Q_{\sigma} \right\}, t \right) \right] dt$$

$$= \delta F \left(t_{f} \right) - \delta F \left(t_{i} \right) = 0 \quad \text{and} \quad \dot{Q}_{\sigma} = \frac{\partial \tilde{H}}{\partial P_{\sigma}} \qquad \dot{P}_{\sigma} = -\frac{\partial \tilde{H}}{\partial Q_{\sigma}} \partial Q_{\sigma} - \tilde{H} \left(\left\{ Q_{\sigma} \right\}, \left\{ P_{\sigma} \right\}, t \right) \right] dt = \int_{t_{i}}^{t_{f}} \left[\sum_{\sigma} \left[\delta P_{\sigma} \dot{Q}_{\sigma} + P_{\sigma} \delta \dot{Q}_{\sigma} - \frac{\partial \tilde{H}}{\partial Q_{\sigma}} \delta Q_{\sigma} - \frac{\partial \tilde{H}}{\partial P_{\sigma}} \delta P_{\sigma} \right] dt$$

$$\int_{t_{i}}^{t_{f}} P_{\sigma} \delta \dot{Q}_{\sigma} dt = \int_{t_{i}}^{t_{f}} \left\{ \frac{d \left(P_{\sigma} \delta Q_{\sigma} \right)}{dt} - \dot{P}_{\sigma} \delta Q_{\sigma} \right\} dt = -\int_{t_{i}}^{t_{f}} \dot{P}_{\sigma} \delta Q_{\sigma} dt$$

Some details --

$$q_{\sigma} = q_{\sigma}(\{Q_1 \cdots Q_n\}, \{P_1 \cdots P_n\}, t)$$
 for each σ

$$p_{\sigma} = p_{\sigma}(\{Q_1 \cdots Q_n\}, \{P_1 \cdots P_n\}, t)$$
 for each σ

For some \tilde{H} and F, using Legendre transformations

$$\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\lbrace q_{\sigma} \rbrace, \lbrace p_{\sigma} \rbrace, t) = \sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \tilde{H}(\lbrace Q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) + \frac{d}{dt} F(\lbrace q_{\sigma} \rbrace, \lbrace Q_{\sigma} \rbrace, t)$$

Action integral:

$$S = \int_{t_i}^{t_f} dt \left(\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\{q_{\sigma}\}, \{p_{\sigma}\}, t) \right)$$

$$\delta S = \int_{t_i}^{t_f} dt \left(\sum_{\sigma} \left(\delta p_{\sigma} \dot{q}_{\sigma} + p_{\sigma} \delta \dot{q}_{\sigma} \right) - \delta H \left(\left\{ q_{\sigma} \right\}, \left\{ p_{\sigma} \right\}, t \right) \right)$$

Note that
$$\delta \int_{t_i}^{t_f} dt \left(\frac{dF(t)}{dt} \right) = \int_{t_i}^{t_f} dt \left(\frac{d\delta F(t)}{dt} \right) = 0$$

Some relations between old and new variables:

$$\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\lbrace q_{\sigma} \rbrace, \lbrace p_{\sigma} \rbrace, t) =$$

$$\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \widetilde{H}(\lbrace Q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) + \frac{d}{dt} F(\lbrace q_{\sigma} \rbrace, \lbrace Q_{\sigma} \rbrace, t)$$

$$\frac{d}{dt}F(\lbrace q_{\sigma}\rbrace, \lbrace Q_{\sigma}\rbrace, t) = \sum_{\sigma} \left(\left(\frac{\partial F}{\partial q_{\sigma}} \right) \dot{q}_{\sigma} + \left(\frac{\partial F}{\partial Q_{\sigma}} \right) \dot{Q}_{\sigma} \right) + \frac{\partial F}{\partial t}$$

$$\Rightarrow \sum_{\sigma} \left(p_{\sigma} - \left(\frac{\partial F}{\partial q_{\sigma}} \right) \right) \dot{q}_{\sigma} - H(\{q_{\sigma}\}, \{p_{\sigma}\}, t) = 0$$

$$\sum_{\sigma} \left(P_{\sigma} + \left(\frac{\partial F}{\partial Q_{\sigma}} \right) \right) \dot{Q}_{\sigma} - \tilde{H} \left(\{ Q_{\sigma} \}, \{ P_{\sigma} \}, t \right) + \frac{\partial F}{\partial t}$$

$$\begin{split} \sum_{\sigma} \left(p_{\sigma} - \left(\frac{\partial F}{\partial q_{\sigma}} \right) \right) \dot{q}_{\sigma} - H(\{q_{\sigma}\}, \{p_{\sigma}\}, t) = \\ \sum_{\sigma} \left(P_{\sigma} + \left(\frac{\partial F}{\partial Q_{\sigma}} \right) \right) \dot{Q}_{\sigma} - \widetilde{H}(\{Q_{\sigma}\}, \{P_{\sigma}\}, t) + \frac{\partial F}{\partial t} \\ \Rightarrow p_{\sigma} = \left(\frac{\partial F}{\partial q_{\sigma}} \right) \qquad P_{\sigma} = -\left(\frac{\partial F}{\partial Q_{\sigma}} \right) \\ \Rightarrow \widetilde{H}(\{Q_{\sigma}\}, \{P_{\sigma}\}, t) = H(\{q_{\sigma}\}, \{p_{\sigma}\}, t) + \frac{\partial F}{\partial t} \end{split}$$

Note that it is conceivable that if we were extraordinarily clever, we could find all of the constants of the motion!

$$\dot{Q}_{\sigma} = \frac{\partial H}{\partial P_{\sigma}} \qquad \dot{P}_{\sigma} = -\frac{\partial H}{\partial Q_{\sigma}}$$

$$\partial \widetilde{H}$$

Suppose:
$$\dot{Q}_{\sigma} = \frac{\partial \widetilde{H}}{\partial P_{\sigma}} = 0$$
 and $\dot{P}_{\sigma} = -\frac{\partial \widetilde{H}}{\partial Q_{\sigma}} = 0$

 $\Rightarrow Q_{\sigma}, P_{\sigma}$ are constants of the motion

Possible solution – Hamilton-Jacobi theory:

Suppose:
$$F(\lbrace q_{\sigma}\rbrace, \lbrace Q_{\sigma}\rbrace, t) \Rightarrow -\sum_{\sigma} P_{\sigma}Q_{\sigma} + S(\lbrace q_{\sigma}\rbrace, \lbrace P_{\sigma}\rbrace, t)$$

$$\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\lbrace q_{\sigma} \rbrace, \lbrace p_{\sigma} \rbrace, t) =$$

$$\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \widetilde{H}(\{Q_{\sigma}\}, \{P_{\sigma}\}, t) + \frac{d}{dt} \left(-\sum_{\sigma} P_{\sigma} Q_{\sigma} + S(\{q_{\sigma}\}, \{P_{\sigma}\}, t) \right)$$

$$= -\widetilde{H}(\{Q_{\sigma}\}, \{P_{\sigma}\}, t) - \sum_{\sigma} \dot{P}_{\sigma} Q_{\sigma} + \sum_{\sigma} \left(\frac{\partial S}{\partial q_{\sigma}} \dot{q}_{\sigma} + \frac{\partial S}{\partial P_{\sigma}} \dot{P}_{\sigma}\right) + \frac{\partial S}{\partial t}$$

Solution:

$$p_{\sigma} = \frac{\partial S}{\partial q_{\sigma}} \qquad Q_{\sigma} = \frac{\partial S}{\partial P_{\sigma}}$$

$$\widetilde{H}(\lbrace Q_{\sigma}\rbrace, \lbrace P_{\sigma}\rbrace, t) = H(\lbrace q_{\sigma}\rbrace, \lbrace p_{\sigma}\rbrace, t) + \frac{\partial S}{\partial t}$$

When the dust clears:

Assume $\{Q_{\sigma}\}, \{P_{\sigma}\}, \widetilde{H}$ are constants; choose $\widetilde{H} = 0$ Need to find $S(\{q_{\sigma}\}, \{P_{\sigma}\}, t)$

$$p_{\sigma} = \frac{\partial S}{\partial q_{\sigma}} \qquad Q_{\sigma} = \frac{\partial S}{\partial P_{\sigma}}$$

$$\Rightarrow H\left\{\{q_{\sigma}\}, \left\{\frac{\partial S}{\partial q_{\sigma}}\right\}, t\right\} + \frac{\partial S}{\partial t} = 0$$

Note: S is the "action":

$$\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\lbrace q_{\sigma} \rbrace, \lbrace p_{\sigma} \rbrace, t) =$$

$$\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma} - \widetilde{H}(\lbrace Q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) + \frac{d}{dt} \left(-\sum_{\sigma} P_{\sigma} Q_{\sigma} + S(\lbrace q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) \right)$$

$$\sum_{\sigma}p_{\sigma}\dot{q}_{\sigma}-H\big(\{q_{\sigma}\},\{p_{\sigma}\},t\big)=$$

$$\sum_{\sigma} P_{\sigma} \dot{Q}_{\sigma}^{\prime} - \tilde{H}(\lbrace Q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) + \frac{d}{dt} \left(-\sum_{\sigma} P_{\sigma} Q_{\sigma} + S(\lbrace q_{\sigma} \rbrace, \lbrace P_{\sigma} \rbrace, t) \right)$$

$$\int_{t_{i}}^{t_{f}} \left(\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - H(\{q_{\sigma}\}, \{p_{\sigma}\}, t) \right) dt = \int_{t_{i}}^{t_{f}} \left(\frac{d}{dt} \left(S(\{q_{\sigma}\}, \{P_{\sigma}\}, t) \right) \right) dt \\
= S(\{q_{\sigma}\}, \{P_{\sigma}\}, t) \Big|_{t_{i}}^{t_{f}}$$

Differential equation for **S**:

$$H\left(\{q_{\sigma}\}, \left\{\frac{\partial S}{\partial q_{\sigma}}\right\}, t\right) + \frac{\partial S}{\partial t} = 0$$

Example:
$$H(\{q\}, \{p\}, t) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

Hamilton - Jacobi Eq:
$$H\left(\{q\}, \left\{\frac{\partial S}{\partial q}\right\}, t\right) + \frac{\partial S}{\partial t} = 0$$

$$\frac{1}{2m} \left(\frac{\partial S}{\partial a} \right)^2 + \frac{1}{2} m \omega^2 q^2 + \frac{\partial S}{\partial t} = 0$$
 Does this look familiar?

Assume:
$$S(q,t) \equiv W(q) - Et$$
 (E constant)

Continued:

$$\frac{1}{2m} \left(\frac{\partial S}{\partial q} \right)^2 + \frac{1}{2} m \omega^2 q^2 + \frac{\partial S}{\partial t} = 0$$

Assume:

$$S(q,t) \equiv W(q) - Et$$

(E constant)

$$\frac{1}{2m} \left(\frac{dW}{dq} \right)^2 + \frac{1}{2} m \omega^2 q^2 = E$$

$$\frac{dW}{dq} = \sqrt{2mE - (m\omega)^2 q^2}$$

$$W(q) = \int \sqrt{2mE - (m\omega)^2 q^2} dq$$

Continued:

$$W(q) = \int \sqrt{2mE - (m\omega)^2 q^2} dq$$

$$= \frac{1}{2} q \sqrt{2mE - (m\omega)^2 q^2} + \frac{E}{\omega} \sin^{-1} \left(\frac{m\omega q}{\sqrt{2mE}}\right) + C$$

$$S(q, E, t) = \frac{1}{2} q \sqrt{2mE - (m\omega)^2 q^2} + \frac{E}{\omega} \sin^{-1} \left(\frac{m\omega q}{\sqrt{2mE}}\right) - Et$$

$$\frac{\partial S}{\partial E} = Q = \frac{1}{\omega} \sin^{-1} \left(\frac{m\omega q}{\sqrt{2mE}}\right) - t$$

$$\Rightarrow q(t) = \frac{\sqrt{2mE}}{m\omega} \sin(\omega(t + Q))$$

Another example of Hamilton Jacobi equations

Example:
$$H(\{y\},\{p\},t) = \frac{p^2}{2m} + mgy$$

Assume y(0) = h; p(0) = 0

Hamilton-Jacobi Eq:
$$H\left\{y\right\}, \left\{\frac{\partial S}{\partial y}\right\}, t\right\} + \frac{\partial S}{\partial t} = 0$$

$$\frac{1}{2m} \left(\frac{\partial S}{\partial y} \right)^2 + mgy + \frac{\partial S}{\partial t} = 0$$

Assume:
$$S(y,t) \equiv W(y) - Et$$
 (E constant)

Example:
$$H(\lbrace y \rbrace, \lbrace p \rbrace, t) = \frac{p^2}{2m} + mgy$$

Assume
$$y(0) = h;$$
 $p(0) = 0$

$$p(0) = 0$$

$$\frac{1}{2m} \left(\frac{dW}{dy}\right)^2 + mgy = E \equiv mgh$$

$$W(y) = m \int_{y}^{h} \sqrt{2g(h-y')} dy' = \frac{2}{3} m \sqrt{2g} (h-y)^{3/2}$$

$$S(y,t) = W(y) - Et = \frac{2}{3}m\sqrt{2g}(h-y)^{3/2} - mght$$

Check action:

For this case:
$$y(t) = h - \frac{1}{2}gt^2$$

$$S = \int_{0}^{t} \left(\frac{1}{2}m\dot{y}^{2} - mgy\right)dt' = \frac{1}{3}mg^{2}t^{3} - mght$$

$$S(y,t) = W(y) - Et = \frac{2}{3}m\sqrt{2g}(h-y)^{3/2} - mght$$

Agrees with Hamilton-Jacobi analysis.

Alternatively, keeping E notation:

$$W(y) = \int_{y}^{h} \sqrt{2mE - 2m^{2}gy'} dy'$$

$$= \sqrt{\frac{2}{m}} \frac{1}{g} (E - mgy)^{3/2}$$

$$S(y,t) = W(y) - Et = \sqrt{\frac{2}{m}} \frac{2}{3g} (E - mgy)^{3/2} - Et$$

$$\frac{\partial S}{\partial E} = Q = \sqrt{\frac{2}{m}} \frac{1}{g} (E - mgy)^{1/2} - t$$

$$\Rightarrow y(t) = \frac{E}{mg} - \frac{1}{2}g(t + Q)^{2}$$
In our case, $Q = 0$

$$E = mgh$$

What do you think of Hamilton-Jacobi method

- a. Historically important
- b. Hysterical
- c. Painful
- d. Might be useful

The next 3 slides contain important equations that you will hopefully remember for this material contained in Chapters 3 & 6 of Fetter and Walecka. On Monday we will start with Chapter 5 and discuss one of the many applications of these ideas – the case of rigid body motion.

Recap --

Lagrangian picture

For independent generalized coordinates $q_{\sigma}(t)$:

$$L = L(\lbrace q_{\sigma}(t) \rbrace, \lbrace \dot{q}_{\sigma}(t) \rbrace, t)$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\sigma}} - \frac{\partial L}{\partial q_{\sigma}} = 0$$

 \Rightarrow Second order differential equations for $q_{\sigma}(t)$

Hamiltonian picture

$$H = H(\lbrace q_{\sigma}(t)\rbrace, \lbrace p_{\sigma}(t)\rbrace, t)$$

$$\frac{dq_{\sigma}}{dt} = \frac{\partial H}{\partial p_{\sigma}} \qquad \frac{dp_{\sigma}}{dt} = -\frac{\partial H}{\partial q_{\sigma}}$$

⇒ Coupled first order differential equations for

$$q_{\sigma}(t)$$
 and $p_{\sigma}(t)$

General treatment of particle of mass m and charge q moving in 3 dimensions in an potential $U(\mathbf{r})$ as well as electromagnetic scalar and vector potentials $\Phi(\mathbf{r},t)$ and $\mathbf{A}(\mathbf{r},t)$:

Lagrangian:
$$L(\mathbf{r},\dot{\mathbf{r}},t) = \frac{1}{2}m\dot{\mathbf{r}}^2 - U(\mathbf{r}) - q\Phi(\mathbf{r},t) + \frac{q}{c}\dot{\mathbf{r}}\cdot\mathbf{A}(\mathbf{r},t)$$

Hamiltonian:
$$\mathbf{p} = \frac{cL}{\partial \dot{\mathbf{r}}} = m\dot{\mathbf{r}} + \frac{q}{c}\mathbf{A}(\mathbf{r},t)$$

$$H(\mathbf{r},\mathbf{p},t) = \mathbf{p} \cdot \dot{\mathbf{r}} - L(\mathbf{r},\dot{\mathbf{r}},t)$$

$$= \frac{1}{2m} \left(\mathbf{p} - \frac{q}{c} \mathbf{A} (\mathbf{r}, t) \right)^{2} + U(\mathbf{r}) + q \Phi(\mathbf{r}, t)$$

Recipe for constructing the Hamiltonian and analyzing the equations of motion

- 1. Construct Lagrangian function : $L = L(\{q_{\sigma}(t)\}, \{\dot{q}_{\sigma}(t)\}, t)$
- 2. Compute generalized momenta: $p_{\sigma} \equiv \frac{\partial L}{\partial \dot{q}_{\sigma}}$
- 3. Construct Hamiltonian expression : $H = \sum_{\sigma} \dot{q}_{\sigma} p_{\sigma} L$
- 4. Form Hamiltonian function : $H = H(\{q_{\sigma}(t)\}, \{p_{\sigma}(t)\}, t)$
- 5. Analyze canonical equations of motion:

$$\frac{dq_{\sigma}}{dt} = \frac{\partial H}{\partial p_{\sigma}} \qquad \frac{dp_{\sigma}}{dt} = -\frac{\partial H}{\partial q_{\sigma}}$$