
Notes on atompaw 4.0.0.0
N. A. W. Holzwarth – July 9, 2013 (17.16)

Changes to atompaw introduced in Version 4.0.0.0
Among the changes are

1. A new option to control the shape of the radial pseudo wavefunction; keyword – MODRRKJ

2. A mechanism to “explore” ranges of radii and energy parameters of the the PAW dataset;
keyword – EXPLORE

MODRRKJ
Amoung the most productive schemes for constructing PAW datasets are those based on the ideas
of David Vanderbilt[1] designed for ultra-soft pseudopotentials. These are available in atompaw
with the keyword VANDERBILT and are based on the following equations. In this scheme, the
shape of the smooth basis functions are directly controlled, while the projector functions are de-
rived from them. Each radial smooth function is chosen to have the form

φ̃nili(r) =

 rli+1

4∑
m=0

Cmr
2m for r < ri

φnili(r) for r ≥ ri

(1)

where φnili(r) denotes the corresponding all-electron basis function. The matching radii ri ≤ rc
are used to control the shapes. The 5 coefficients {Cm} are chosen so that φ̃nili(r) = φnili(r) at
5 points in the neighborhood of ri which is roughly equivalent to ensuring that the function at its
first 4 derivatives match at ri.

Another scheme to control the shape of the smooth basis functions was developed by Rappe, Rabe,
Kaxiras, and Joannopoulos[2] which using spherical Bessel functions instead of polynomial func-
tions. We have slightly modified the original idea in order to ensure the derived projector functions
are also smooth and that we can control the desired number of nodes in the pseudowave function.
The details of the scheme (keyword MODRRKJ) are as follows.

φ̃nili(r) =

{ ∑
q C

i
qrjli(kqr) for r ≤ ri

φnili(r) for r > ri
(2)

Again the matching radii are chosen ri ≤ rc. The nodes are controlled by the choice of kq. In
practice, we choose 5 values of kq:

kq = k0 + (q − 3)δk where q = 1, 2, . . . 5, (3)

and where k0 is chosen so that k0r has the correct number of nodes in the range 0 ≤ r ≤ ri and so
that

d(rjli(k0r))/dr

rjli(k0r)

∣∣∣∣
r=ri

=
dφnili(r)/dr

φnili(r)

∣∣∣∣
r=ri

. (4)

In practice, δkri ≈ π/20. The coefficients Ci
q are determined by fitting the spherical Bessel

function expansion to the all-electron function at 5 radial points rn points in the vicinity of ri:
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∑
q

Ci
qrnjli(kqrn) = φnili(rn). (5)

In fact, because of the choice of k0, the set of linear equations has rank 4 and the solution is obtained
with the help of “singular value decomposition” and using the 4 largest ”singular values”. We find
that the resulting MODRRKJ pseudowavefunctions φ̃nili(r) are very similar to those obtained with
the VANDERBILT scheme. However, we expect that the MODRRKJ scheme may have have slight
convergence advantages. This expectation remains to be further investigated.

Along with the construction of the all-electron |φi〉 and pseudo |φ̃i〉 basis functions, it is necessary
to also construct the projector functions |pi〉. Here we use the notation

|φi〉 ≡
φnili

r
Ymili(r̂). (6)

It is assumed that the basis functions |φi〉 are eigenstates of the all-electron HamiltonianH:

H|φi〉 = εi|φi〉. (7)

The pseudo functions obey the following corresponding equations:(
H̃ − εk

)
|φ̃k〉 =

∑
j

|pj〉〈φ̃j|H̃ − εk|φ̃k〉. (8)

The projector functions are related to the pseudobasis functions with the following identity:

〈φ̃j|pk〉 = δjk. (9)

Given the pseudo basis functions |φ̃i〉 using the MODRRKJ scheme or other scheme, there are
several choices on how to generate the projector functions |pi〉.

Vanderbilt -type projector; keyword VANDERBILTORTHO
This method works well in most cases and is based on the original idea presented by Vanderbilt in
the formulation of the ultra-soft pseudopotentials[1].
n this case, we construct the n × n matrix (where n denotes the number of basis functions for a
particular l value):

Mjk ≡ 〈φ̃j|H̃ − εk|φ̃k〉. (10)

Define the intermediate projector function:

|πk〉 ≡
(
H̃ − εk

)
|φ̃k〉. (11)

Then the projector function can be formed from the inverse of the M matrix:

|pj〉 =
∑
k

|πk〉
(
M−1

)
kj
. (12)

Singular value decomposition -type projector; keyword SVDORTHO
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In principle, this should be a more robust, in practice the projectors do not have an obviously
recognizable shape and this option has not been thoroughly tested.
In this case we use the M matrix defined above, but first take its SVD construction:

Mjk =
∑
α

uαj σ
αvα ∗

k . (13)

Here uαj and vαk denote components of orthogonal vectors and σα denotes a “singular value”. We
can define the composite projectors and basis functions

|pα〉 ≡
∑
j

|pj〉uαj (14)

and

|φ̃α〉 ≡
∑
j

|φ̃j〉uαj . (15)

The consistent formula for the composite projector function is:

|pα〉 ≡ 1

σα

∑
j

|πj〉vαj . (16)

Gram-Schmidt orthogonalization -type projector; keyword GRAMSCHMIDTORTHO
In this case we build up the basis and projector functions by sequencial orthonomalizations. Here
we denote the orginal constructed functions with a superscript 0. For the first set (k = 1) we have

|φ̃1〉 = |φ̃0
1〉 |p1〉 =

|π1〉
〈φ̃1|π1〉

. (17)

For the second set (k = 2) we have

|φ̃2〉 =
(
|φ̃0

2〉 − |φ̃1〉〈φ̃0
2|p1〉

)
. (18)

|p2〉 = N
(
|π2〉 − |p1〉〈φ̃1|π2〉

)
. (19)

Here the normalization factor N are set by the normalization condition.

〈φ̃2|p2〉 = 1 = N
(
〈φ̃0

2|π2〉 − 〈φ̃0
2|p1〉〈φ̃1|π2〉

)
. (20)

If additional basis/projector functions are needed, the process is continued.

EXPLORE
A large number of collaborators including Alan Tackett and Greg Walker from Vanderbilt Uni-
versity, Alan Wright from Sandia National Laboratory, Qi Li from Wake Forest University, have
helped us realize that the choosing of pseudopotential parameters (augmentation radii rc, match-
ing radii ri, continuum basis energies εi) is a multi-dimensional optimization problem that can
be helped with notions computer-aided design. Toward that idea, we have implimented an “EX-
PLORE” option in running atompaw to scan through many choices of parameters. In order to
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Figure 1: Typical input file for atompaw.

explain how this works we first consider the form of the atompaw input file. For normal usage, the
file can be described in 3 parts as shown in Fig. 1; a section for the all-electron atom, a section for
constructing the pseudoptentials, and a section for generating outputs for the various solid codes.

The section setting the pseudopotential parameters generally has many choices. In the “EX-
PLORE” mode the input file would have the form shown in Fig. 2. There are several possible crite-
ria for choosing the best parameters set. The easiest to study is the comparison of the logderivative
of the all-electron and pseudo wavefunctions. In particular we record the logderivative “error”
defined according to

εl ≡

∣∣∣∣∣∣tan−1

(
dφnili

dr

φnili

)
− tan−1

 d ˜phinili

dr

φ̃nili

∣∣∣∣∣∣
rc

. (21)

Choosing the parameter set with the smallest values of εl can result in good PAW datasets; unfor-
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Figure 2: Input file for atompaw for the “EXPLORE” mode.

5



tunately, this criterion alone does not necessarily screen against possible ghost states.
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