
Electrodynamics – PHY712

Lecture 27 – Liénard-Wiechert potentials and fields – following derivations in
Lecture 16

When we previously considered solutions to the inhomogeneous electromagnetic wave
equations in the Lorentz gauge, (chapter 6 in Jackson, we were using MKS units. We
keep these units in the following derivations. Consider a point charge q moving on a
trajectory Rq(t). We can write its charge density as

ρ(r, t) = qδ3(r−Rq(t)), (1)

and the current density as

J(r, t) = qṘq(t)δ
3(r−Rq(t)), (2)

where

Ṙq(t) ≡
dRq(t)

dt
. (3)
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Liénard-Wiechert potentials and fields – continued

Evaluating the scalar and vector potentials in the Lorentz gauge,

Φ(r, t) =
1

4πε0

∫ ∫
d3r′ dt′

ρ(r′, t′)

|r− r′|
δ (t′ − (t− |r− r′|/c)) , (4)

and

A(r, t) =
1

4πε0c2

∫ ∫
d3r′ dt′

J(r′, t′)

|r− r′|
δ (t′ − (t− |r− r′|/c)) . (5)

We performing the integrations over first d3r′ and then dt′, and make use of the fact that
for any function of t′,∫ ∞

−∞
dt′ f(t′)δ (t′ − (t− |r−Rq(t

′)|/c)) = f(tr)

1− Ṙq(tr)·(r−Rq(tr))
c|r−Rq(tr)|

, (6)

where the “retarded time” is defined to be

tr ≡ t− |r−Rq(tr)|
c

. (7)
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Liénard-Wiechert potentials and fields – continued

We find

Φ(r, t) =
q

4πε0

1

R− v·R
c

, (8)

and

A(r, t) =
q

4πε0c2
v

R− v·R
c

, (9)

where we have used the shorthand notation R ≡ r−Rq(tr) and v ≡ Ṙq(tr).
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Electric and magnetic fields – continued

In order to find the electric and magnetic fields, we need to evaluate

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
(10)

and

B(r, t) = ∇×A(r, t). (11)

The trick of evaluating these derivatives is that the retarded time (7) depends on position
r and on itself. We can show the following results using the shorthand notation defined
above:

∇tr = − R

c
(
R− v·R

c

) , (12)

and
∂tr
∂t

=
R(

R− v·R
c

) . (13)
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Electric and magnetic fields – continued

Evaluating the gradient of the scalar potential, we find:

−∇Φ(r, t) =
q

4πε0

1(
R− v·R

c

)3 [R(1− v2

c2

)
− v

c

(
R− v ·R

c

)
+R

v̇ ·R
c2

]
,

(14)
and

−∂A(r, t)

∂t
=

q

4πε0

1(
R− v·R

c

)3 [vRc
(
v2

c2
− v ·R

Rc
− v̇ ·R

c2

)
− v̇R

c2

(
R− v ·R

c

)]
.

(15)
These results can be combined to determine the electric field:

E(r, t) =
q

4πε0

1(
R− v·R

c

)3 [(R− vR

c

)(
1− v2

c2

)
+

(
R×

{(
R− vR

c

)
× v̇

c2

})]
.

(16)
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Electric and magnetic fields – continued

We can also evaluate the curl of A to find the magnetic field:

B(r, t) =
q

4πε0c2

[
−R× v(
R− v·R

c

)3 (1− v2

c2
+

v̇ ·R
c2

)
− R× v̇/c(

R− v·R
c

)2
]
. (17)

One can show that the electric and magnetic fields are related according to

B(r, t) =
R×E(r, t)

cR
. (18)
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Summary of results in cgs (Gaussian) units

E(r, t) =
q(

R− v·R
c

)3 [(R− vR

c

)(
1− v2

c2

)
+

(
R×

{(
R− vR

c

)
× v̇

c2

})]
.

(19)

B(r, t) =
q

c

[
−R× v(
R− v·R

c

)3 (1− v2

c2
+

v̇ ·R
c2

)
− R× v̇/c(

R− v·R
c

)2
]
. (20)

In this case, the electric and magnetic fields are related according to

B(r, t) =
R×E(r, t)

R
. (21)
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Two formulations of electromagnetic fields produced by a charged particle moving
at constant velocity

In Chapter 11 of Jackson (page 559 – Eqs. 11.151-2 and Fig. 11.8), we derived the
electric and magnetic field of a particle having charge q moving at velocity v along the x̂

axis. The results are for the fields at the point r = bŷ are:

E(x, y, z, t) = E(0, b, 0, t) = q
−vγtx̂+ γbŷ

(b2 + (vγt)2)
3/2

(22)

and

B(x, y, z, t) = B(0, b, 0, t) = q
γβbẑ

(b2 + (vγt)2)
3/2

(23)

for the electric and magnetic fields respectively. The denominators of these expressions
are easily interpreted as the distance of the particle from the field point, as measured in
the particle’s own reference frame.
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Field transformation example – continued

On the other hand, we can consider the same physical problem from the point of view of
Liénard-Wiechert potentials.

onsider the electric field produced by a point charge q moving on a trajectory described
by r0(t) with ρ(r, t) ≡ qδ3(r− r0(t)). Assume that v0(t) ≡ ∂r0(t)/∂t and
∂2r0(t)/∂t

2 = 0. Using the previously derived results for the Liénard Wiechert
potentials, changed into Gaussian units, the electric field can be written in the form:

E(r, t) =
q

4πε0

(1− v20/c
2)(R− v0R/c)

(R− v0 ·R/c)3
−→

Gaussian units

q
(1− v20/c

2)(R− v0R/c)

(R− v0 ·R/c)3
, (24)

where R ≡ |R(tr)|, R(tr) ≡ r− r0(tr), and where all quantities which depend on time
on the right hand side of the equation are evaluated at the retarded time
tr ≡ t−R(tr)/c. The corresponding Gaussian unit magnetic field is given by

B =
R×E

R
. (25)
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Field transformation example – continued

If we evaluate this result for the same case as above (Fig. 11.8 of Jackson), v0 ≡ vx̂,
and R(tr) = −vtrx̂+ bŷ. In order to relate this result to Eqs. 22 and 23 above, we need
to express tr in terms of the known quantities. Noting that

R(tr) = c(t− tr) =
√
(vtr)2 + b2, (26)

we find that tr must be a solution to the quadratic equation:

t2r − 2γ2ttr + γ2t2 − γ2b2/c2 = 0 (27)

with the physical solution:

tr = γ

(
γt−

√
(vγt)2 + b2

c

)
. (28)
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Field transformation example – continued

Now we can express the length parameter which appears in Eq. 24 as

R = γ
(
−βvγt+

√
(vγt)2 + b2

)
. (29)

We also can show that the numerator of Eq. 24 can be evaluated:

R− v0R/c = −vtx̂+ bŷ, (30)

and the denominator can be evaluated:

R− v0 ·R/c =

√
(vγt)2 + b2

γ
. (31)

Substituting these results into Eqs. 24 and 25, we obtain the same electric and magnetic
fields as given in Eqs. 22 and 23 from the field transformation approach.
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