PHY 712 Electrodynamics
10-10:50 AM MWF in Olin 103

Lecture Notes for Lecture 15:

Start reading Chapter 6 (Sec. 6.1-6.4)

Note: Instead of following Sec. 6.5, we will introduce
the Lienard-Wiéchert approach.

1.

2.

3.

02/17/2025

Maxwell’s full equations; effects of time varying
fields and sources

Gauge choices and transformations

Green'’s function for vector and scalar potentials
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Course schedule for Spring 2025

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading Topic Due date
Mon: 01/13/2025 |Chap. 1 & Appen. |Introduction, units and Poisson equation 01/15/2025
Wed: 01/15/2025 |Chap. 1 Electrostatic energy calculations 01/17/2025
Fri: 01/17/2025 Chap. 1 Electrostatic energy calculations 01/22/2025
Mon: 01/20/2025 |No Class Martin Luther King Jr. Holiday
Wed: 01/22/2025 |Chap. 1 Electrostatic potentials and fields 01/24/2025
Fri: 01/24/2025 Chap.1-3 Poisson's equation in multiple dimensions
Mon: 01/27/2025 |Chap.1-3 Brief introduction to numerical methods 01/29/2025
Wed: 01/29/2025 |Chap.2 & 3 Image charge constructions 01/31/2025
Fri: 01/31/2025 Chap.2 &3 Poisson equation in cylindrical geometries 02/03/2025
Mon: 02/03/2025 |Chap.3 & 4 Spherical geometry and multipole moments 02/05/2025
Wed: 02/05/2025 |Chap. 4 Dipoles and Dielectrics 02/07/2025
Fri: 02/07/2025 Chap. 4 Dipoles and Dielectrics #10(02/10/2025
Mon: 02/10/2025 |Chap. 5 Magnetostatics #11102/12/2025
Wed: 02/12/2025 |Chap. 5 Magnetic dipoles and hyperfine interactions #12102/14/2025
Fri: 02/14/2025 Chap. 5 Magnetic materials and boundary value problems [#13|02/17/2025
Mon: 02/17/2025 |Chap. 6 Maxwell's Equations #1402/19/2025
Wed: 02/19/2025 |Chap. 6 Electromagnetic energy and forces

02/17/2025
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PHY 712 — Problem Set #14
Assigned: 02/17/2025  Due: 02/19/2025
Read Chapter 6 (Sec. 6.1-6.4) in Jackson.

1. Evaluate the following integral over the Dirac delta function of a non-trivial
argument. Explain your reasoning and show intermediate steps.

0,
/ e d(sin(x))dx.

—10
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Full electrodynamics with time varying fields and sources

Maxwell’s equations

"From a long view of the history
of mankind - seen from, say, ten
thousand years from now - there
can be little doubt that the most
significant event of the 19th
century will be judged as
Maxwell's discovery of the laws of
electrodynamics”

Image of statue of
James Clerk-Maxwell
(1831-1879) in Edinburgh

Richard P Feynman

http://www.clerkmaxwellfoundation.org/

02/17/2025 PHY 712 Spring 2025-- Lecture 15 4



http://www.clerkmaxwellfoundation.org/

Maxwell’s equation

Microscopic or vacuum form (P —O, M —O):

Coulomb's law : V-E=p/g,
1 OE
Ampere-Maxwell'slaw: VxB—— %t = 1,d
C
B
Faraday's law : VxE+ % =0
No magnetic monopoles: V:-B=0

1

oy
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Maxwell’s equations

Coulomb's law : V-D=p,.
oD
Ampere- Maxwell'slaw: VxH - 'l J free
B
Faraday's law : VxE+ %—t =0

No magnetic monopoles: V-B=0
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Formulation of Maxwell’'s equations in terms of vector and
scalar potentials — here focusing on the full E and B fields

V:-B=0 — B=VxA
VxE+6—B—O :>V><(E+8—Aj 0
Ot ot
E+8—A VO
ot
or E_—VcI)—@—A

Ot



Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued

V-E=pl/g,:
o(V-A)
—V'OD - =plé&
Py P&
1 OE
VxB-— = .J
c* Ot Ho

2
Vx(VxA)+ 12 (8(VCD)+ ‘ Aj = u,d



Formulation of Maxwell’'s equations in terms of vector and

scalar potentials -- continued . .
General form for the scalar and vector potential equations:

o(V-A)
—V’D - =ple
Py P&
1 {o(V®) &”A

Vx(VxA)+ + = 1,d

( ) cz[ ot ot j Ho
Coulomb gauge form -- require V- A, =0
VO, =ple,

0°A O(VD

—VZAC+1 c ] ( C):yOJ

c& o & ot
Note that 1t 1s useful to define the following:
J=J,+J, withVxJ, =0 and V-J, =0



Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued
Coulomb gauge form --require V- A =0
~V’®,.=pleg,
1 °A,. 1 o(V®
_V2AC 4 C 4 ( c)

¢’ Ot c? ot

NotethatJ =J,+J, withVxJ, =0 and V-J, =0

Continuity equation for charge and current density :

— ll’lOJ

Poyy—0 =P vy -y 2V
ot ot ot
1 o(Vd,.) (VD)
:>Cz @tc = &ty @l‘c = Ud,
2
_VZAC"' L 0 A = Ko,

¢t Ot



Another possible choice of gauge --

Ludvig Lorenz

Born 18 January 1829
Helsinger, Denmark
Died 9 June 1891 (aged 62)
Frederiksberg, Denmark
Resting Assistens Cemetery
place (Copenhagen), Denmark
Nationality Danish
Known for Wiedemann—Franz—Lorenz law
Lorentz—Lorenz equation
Lorenz gauge condition
Lorenz—Mie theory
Scientific career
Fields Physicist
Signature
/
5 >
rerey -
02/17/2025

Responsible
for Lorenz
Gauge

Responsible for
Lorentz
transformation
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Hendrik Lorentz
ForMemRS

Born

Died

Lorentz in 1902

Hendrik Antoon Lorentz
18 July 1853

Amhem, Gelderland,
Netherlands

4 February 1928 (aged 74)

Haarlem, North Holland,
Netherlands

Alma mater University of Leiden (BS, 1871;

Known for

doctorate, 1875)

Postulating length contraction
(1892)

Formulating the Lorentz force
law (1895)

Proposing the Lorentz ether
theory (1895)

Explaining the Zeeman effect
(1896)

Introducing the Lorentz
transformation (1899)
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Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued
Review of the general equations:

o(V-A)
—V*O0 - =ple
Py P&
1 (0(VDP) &°A
Vx(VxA)+ + = U,J
( ) cz( ot 8t2) Ho
. 1 oD
Lorenz gauge form -- require V- A, +— a@ L=0
C [
1 o°®
~-V’®, + 28 L=pleg,
c- ot i
2 Recall that
~-V°A, + L OA,

C

7oz M Y (VXA =V(V-A)-VA



Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued

. 1 00
Lorenz gauge form -- require V- A, +— 8tL =0
C
1 0’0,
VD, + =p/ &,
Lot o —F
1 0°A
2
-V°A, +c2 > E=ud
. O\
Alternate potentials: A', = A, +VA and @', =P, v
. . . 1 0°A
Yields same physics provided that: V’A — =0

¢t ot



Solution of Maxwell’'s equations in the Lorenz gauge

1 0’0,
VO, - —pl&
¢’ ot P e
1 0°A
2
VAL T T
Consider the general form of the 3 - dimensional wave equation :
1 0°Y
VY - =—4
¢’ ot 7

¥(r,r)= wave field ¥f(r,)= source
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Solution of Maxwell’'s equations in the Lorenz gauge -- continued
Let ¥ represent @, 4 A ,A.  Letf represent p,J_,J oo
1 0°¥(r,1) _
c> ot
Green's function :
1 (’92 (T 3 ' '
V- —— |G(r,t;x'", ") =475 (r —1')5(t - 1)

¢’ ot?

V¥(r,t)- —47f (r,¢)

Formal solution for field P(r,):
W(r,0)="¥, o (r.0)+ [@r|aGr.er,0)f (1)



Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Determination of the form for the Green's function :

2
[vz _if’_jg(r,t;rv,f) 4 (V1)

¢’ ot

For the case of 1sotropic boundary values at infinity :

Glr,5;r',¢') = ‘rir" 5(t'—(i —%‘r —r'D

Formal solution for field ¥(r,7):
[a@’r|ar L s t'—(r—l\r—r'
‘r -1 C

Y(r,t)="V,_(r,t)+

]jf(r',r')




Solution of Maxwell’'s equations in the Lorenz gauge -- continued
Analysis of the Green's function:

¢’ ot

2
[Vz —i@—]G(r,t;r',z") =475 (r—r')5(t—1")
"Proof" -- Fourier analysis in the time domain -- note that
S(t—1)=— j do &™)

Define:
G(r,t;r',t')zi_ooda) el G(r,r',a))
2 a)z ~ ' 3 '
- (V +—2]G(r,r,a)) =—476" (r—r')

C



Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Analysis of the Green's function (continued) :
0 |~

[Vz + —2JG(r, r',w)= 475 (r —r')
c

For the case of 1sotropic boundary values at infinity :

~~/ ~~

G(r,r',0)=G(r-r', o)

Further assuming that 5(1‘ -r', a)) 1S 1Sotropic in ‘r —r'

1 d* PN ; ,
(R FTY R+C—2jG(r,r ,0)=—475"(r—r')

=R:

Solution : 5(1', r, a)) _ %eﬂwR/c



Solution of Maxwell’s equations in the Lorenz gauge --
Analysis of the Green's function (continued) :

é(r, r , a)) _ 1 eiia)|r—r'|/c
‘r —r'
G(r,5;r',1") = b daw e G(r,r', o)
27T
_ L ]O e oioli=t) L sioleriye
27 7 ‘r —r'

continued




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Ole—lesfe /)

G(r,t;r',t') =

Solution for field ¥ (r, 7):
‘P(r,t): Y., (r,t)+

j d’r j dr'

el




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Lienard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge g moving on a trajectory R(f).

Charge density: p(r,1)=¢é" (r—R (1))
dR (?)

Current density: J(r,?) =g Rq (O3 (r-R (1), where Rq () = ”

R (1)
o )




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

D(r.0)= rdt 'p(r 5(t'—(t=r=r'|/c))
r—r' |
A(r,t) = _ ”d3r'dt"](r ’t')5(t'—(t—|r—r'|/c)).

472'606’ r—r'|

We performing the integrations over first d°r’ and then dt’
making use of the fact that for any function of ¢/,

& f(t)
dt' f"o(t'-(@—|r—R (t"|/c))= : A :
L. ( (11) R, @) r-R,))
clr—=R_(z,)]
where the " ‘retarded time" is defined to be

- R,(0,)|

C

[ =1 —




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Resulting scalar and vector potentials:

q |
D(r,t) = ’
(r ) 472'60 R_V. R
C
q Vv
A(r,t) = ’
(r,?) 47TEOC2R_V°R
C
Notation: R =  — Rq(tr) r— R (1,)]

[ =t

r

V=R, (), :




Comment on Lienard-Wiechert potential results
[t s = (e e = Ry /e) = —

1 — Ry (tr) (r—Rg(tr)) |
clr—R,(t,)]

where the “retarded time” is defined to be

_ r—Rg(tr)]

C

t. =1
Note that for any function F(x):
| F()8(x—x,)dx = F(x,)

Now consider a function p(x), for which p(x,)=0fori=1,2,---

[ F03(p(e)ds =TF<x>[Z 5[(x—xi i

]]dx
d .
dx

X
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Comment on Lienard-Wiechert potential results -- continued

e L= =R
where the “retarded time” is defined to be
to=1t— r—Rg(tr)] .
c
In this case we have: I SN (p(t)dt'=— f(2) '
-0 I_Rq(tr)'(r_Rq(t ))
cr—R, (tr)
—R (¢’
where: p(t") = t'{z‘ ‘r q( ) ]
C
dRq (t') ! .
@) g TR R ()(r-R, (1)
dt' clr=R, (¢ cr—R, (1)
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Summary of results for fields due to moving charge —
Liénard Wiechert potentials

Resulting scalar and vector potentials:

q 1
D(r,t) =
(r ) 472'60 R_V. R
c
q V
A(r,t) =
(r,) 4726002R_V' R
c
Notation: R =  — Rq(tr) r— R (1,)]

[ =t

r

V=R, (), :
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