PHY 712 Electrodynamics
10-10:50 AM in Olin 103

Notes for Lecture 20:

Wave Guides - Chap. 8 (Sec. 8.1-8.4 in JDJ)

1. TEM, TE, and TM modes of electromagnetic
waves

2. Justification for boundary conditions;
behavior of waves near conducting
surfaces

3. Rectangular waveguide
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13

Wed: 02/12/2025

Chap.

Magnetic dipoles and hyperfine interactions

02/14/2025

5 #12

14 |Fri: 02/14/2025 Chap. 5 Magnetic materials and boundary value problems |#13/02/17/2025
15 [Mon: 02/17/2025 |Chap. 6 Maxwell's Equations #1402/19/2025
16 Wed: 02/19/2025 |Chap. 6 Electromagnetic energy and forces #15/02/21/2025
17 |Fri: 02/21/2025 Chap. 7 Electromagnetic plane waves #1602/24/2025
18 [Mon: 02/24/2025 |Chap. 7 Electromagnetic response functions #1702/26/2025
19 Wed: 02/26/2025 Chap. 7 Optical effects of refractive indices #1802/28/2025
20 |Fri: 02/28/2025 Chap. 8 Waveguides
21 Mon: 03/03/2025 |Chap. 8 Waveguides
22 Wed: 03/05/2025
23 [Fri: 03/07/2025 Review

Mon: 03/10/2025 |No class Spring Break

Wed: 03/12/2025 |No class Spring Break

Fri: 03/14/2025 No class Spring Break

Mon: 03/17/2025 |No class Take-home exam

Wed: 03/19/2025 |No class Take-home exam

Fri: 03/21/2025 No class Take-home exam

No HW assignment for Monday, but it would be good to

start thinking about your presentation topics.

2/28/2025
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Some Ideas for Computational Project

The purpose of the "Computational Project” is to provide an opportunity for you to study a topic of your choice in
greater depth. The general guideline for your choice of project is that it should have something to do with
electrodynamics, and there should be some degree of computation or analysis with the project. The completed project
will include a short write-up and a ~15 min presentation to the class. You may design your own project or use one of
the following list (which will be updated throughout the term).

» Evaluate the Ewald sum of various ionic crystals using Maple or a programing language. (Template available in
Fortran code.)

» Work out the details of the finite difference or finite element methods.

» Work out the details of the hyperfine Hamiltonian as discussed in Chapter 5 of Jackson.

» Work out the details of Jackson problem 7.2 and related problems.

» Work out the details of reflection and refraction from birefringent materials.

* Analyze the Kramers-Kronig transform of some optical data or calculations.

* Determine the classical electrodynamics associated with an infrared or optical laser.

* Analyze the radiation intensity and spectrum from an interesting source such as an atomic or molecular transition,
a free electron laser, etc.

» Work out the details of Jackson problem 14.15.
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Maxwell’s equatio

For linear 1sotropic media and no sources: D=c¢E; B=uH

Coulomb's law: V-E=0

OE
Ampere-Maxwell's law: VxB - u¢ = =0
Faraday's law: VXE+ %—B 0

[

No magnetic monopoles: V-B=0
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Analysis of Maxwell’'s equations without sources -- continued:
Coulomb's law : V-E=0

Ampere-Maxwell'slaw: VxB-— yg%—? 0
Faraday's law : V><E+%—]t3 0
No magnetic monopoles: V:-B=0
E VxE
Vx(VxB ,uga—j —VzB—,uga( . )
ot ot
0°B
=-V’B+ us =(
H o
vx(wmwj_—vzm@wxm
Ot ot
2
=-V E+,u<9a £ =0

ot’



Analysis of Maxwell’'s equations without sources -- continued:
Both E and B fields are solutions to a wave equation:

2
B
V'B 12 0 —=0
V™ Ot
2
E
V’E 12 ¢ —=0
V™ Ot
where v°=c’ Hoo _ ¢
ue n’

Plane wave solutions to wave equation :
B(r,t)= ER(BOeik"'_i”t) E(r,t)= %(Eoeik'r_i”t)



Analysis of Maxwell’'s equations without sources -- continued:
Plane wave solutions to wave equation :

B(r,t)= %(Boeik'r_i“’t) E(r,t)= %(Eoeik'r_i”t)

2 2
2 @ nao &
‘ =| — | =| — where n = K

v c Ho&y
Note: ¢, 1, n, k can all be complex; for the moment we will
assume that they are all real (no dissipation).

Note that E, and B, are not independent;

B
from Faraday's law : VXE+%—t 0
kxE, nkxE, __Forreal
=B, = - = » g 1, N, K

alsonote: k-E,=0 and k-B,=0 —



Analysis of Maxwell’'s equations without sources -- continued:
Summary of plane electromagnetic waves:

B(l', t) _ 9;{[ nk x EO eik-ria)tj E(l', t) _ ER(EOeik-r—ia)t )

C

2 2
‘k‘z = (QJ = (@j wheren= |-+ andk -E, =0
v ¢ Ho&

Poynting vector and energy density:

-

2
), L e
& 2uc 2\ u E,

|
<“>avg = E‘EO‘z

2 V\k)

>




Transverse electric and magnetic waves (TEM)

B(l‘,t) _ fﬁ[nk xE, eik-ria)tj E(l‘,t) _ m(EOeik-r—ia)t)

C

2 2
‘k‘z = (gj = (@j where n= |22 and k- E, =0
v ¢ Ho&

A

TEM modes describe E,

electromagnetic waves in lossless
BO/\
k

media and vacuum

For real
g 1, N, K

Note that linear combinations of TEM modes are also TEM.



Effects of complex dielectric; fields near the surface on an
ideal conductor

Suppose for an 1sotropic medium: D =g E J =0E
Maxwell's equations in terms of H and E :
V-E=0 V-H=0

cH OE

VxE=—1u——- VxH = oE + ¢ —
Ot Ot

) 0 O’
\% —yaa—ygb(,}? F=0 F=EH

Plane wave form for E :

E(r,t)= %(Eoeik'“"”t) where k = (n,, +in, )%f{

= E(r,¢)= e_f”miR(Eoei”R(w/c)l%-r—iwz)



Some detalils:

Plane wave form for E :

E(r,t)= ER(EOe"k""i“”) where k = (n, + inl)ﬁf{
c
0 0’
V2 - o2 - E=0
( T T j

uoc’

—(nR+in ) +1 +ug,c’ =0

0,
Note that in this formulation, we are assuming ¢, and o

are real numbers. Also note that the full permattivity 1s

.0 .
¢ =¢, +i— and all response parameters are functions of ®.

@



Fields near the surface on an ideal conductor -- continued
For our system :

( 2
QnR:a)w/ﬂ—gb \/1+£i] +1
C 2 e,

\\1/2

( > \1/2
inza),/%gb \/1+[ij 1
C WE
\ SO
Forg>>1 QnRan,z How : .
@ c c 2 S€a “skin depth”
— E(r,t) _ e—l}-r/ém(EOeif(-r/&—iaﬂ)
n - 1+17 -
= H(r,t)=—kxE(r,t)=——kxE(r,?)

o7 ) oUW



Some representative values of skin depth

Ref: Lorrain? and Corson

W 0 uow 1
— N, ®R—N, R, |——— =—
C C 2 o Note that frequency given in
units of Hz = —
27
7 6 (0.001m) 6 (0.001m)
o (1075/m) Hho at 60 Hz at 1 MHz
Al 3.54 1 10.9 84.6
Cu 5.80 1 8.5 66.1
Fe 1.00 100 1.0 10.0
Mumetal 0.16 2000 0.4 3.0
Zn 1.86 1 15.1 117
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Relative energies associated with field
Electric energy density: &, ‘E‘z

Magnetic energy density: y‘H‘z

2
e, |E 2 Q2
Ratio inside conducting media: b‘ — = &b _ = E,10°0
#[H p 1+ 2
P 2re ¢ Suw
w f 26 M 52
&y My A
&, ‘E ’ . |
For ‘ > << 1 = magnetic energy dominates
ulH

&, E‘

Note that 1n free space,
Hy H‘




Fields near the surface on an ideal conductor -- continued

o 0, 0, cw |
For—>>1 —n,~=—n, a
0, C C 2 %)

Q
Il

o ]
In this limit, iy, UE =N, +in, =£—(1+i)
Ho&y O

E (l', t) — e—f(-r/ém (Eoeiﬁ-r/5—iwt )

h

n - 1+7 ~
(r, t) ” X (r, t) S X (r, t)
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Fields near the surface on an ideal conductor -- continued

(Note that we are assuming no extra charges or
currents beyond material responses via ¢, g, 11.)

1D (l', t) _ e—f(-r/ém (Eoeif(-r/é—ia)t )

n - 1+7 ~
(r,t) ” X (r,t) S X (r,t)

0 Z
Note that it 1s convenient to express the EM fields

in terms of the H amplitude:
H (l’, ZL) _ e—f(-r/ém (Hoeif{-r/5—ia)t )

E(r,t)= 5ya)%f{xH(r,t)
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Boundary values for ideal conductor

At the boundary of an

Inside the conductor : ideal conductor, the E
kel iRt/ 5—icot and H fields decay in the
H(r,t) —¢ ER(HOe ) direction normal to the
i . .
E(r,t)= 5;1(071ka(1‘,1‘) interface.

Ideal conductor boundary conditions:

=0 n-H

S

ﬁxE = ()

S
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Wave guides — dielectric media with one or more metal boundary

Continuity conditions for fields near metal boundaries --

Ideal conductor boundary conditions: <E_
nxEl =0 n-H =0 H
S S

/N

n

Waveguide terminology
« TEM: transverse electric and magnetic (both E and H
fields are perpendicular to wave propagation direction)
« TM: transverse magnetic (H field is perpendicular to
wave propagation direction)
« TE: transverse electric (E field is perpendicular to wave
propagation direction)
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Analysis of rectangular waveguide

Boundary conditions at surface of waveguide:
Etangentia|=0, Bnorma|=o

Cross section view
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Analysis of rectangular waveguide

X

77 ——>

B = SR{[BX (o, ¥ )X + B, (x, »)§ + B.(x, J/)i)eikz_iwt}
E = ER{[Ex (xa y)f(+ Ey (x9 y)gl T EZ (x’y)i)eikz_iwt}

Inside the dielectric medium: (assume & to be real)

VxE+8—B =0 VxB — g,uﬁ—EzO
Ot ot
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Solution of Maxwell’'s equations within the pipe:

Combining Faraday's Law and Ampere's Law, we find that each field
component must satisfy a two-dimensional Helmholz equation:

F=E orH
propagation along z.

o° 0
L@xz + E —k’ +,u<9a)2j F(x,y) = 0.

For the rectangular wave guide discussed in Section 8.4 of your

text a solution for a TE mode can have:

E (x,y)=0 and B_(x,y)=B5, cos(mﬂxjcos(nzyj,
a

2 2
with k> =k’ = pew’ Km—ﬂj +(ﬂj }
a b




Maxwell’s equations within the pipe in terms of all 6 components:

OB
B, +—=+1kB. =0.
ox 0y
O, OF

+——+iffy =0.
ox Oy ﬁz

OF.

¢

IkE —% =iwB,.
X

—IkE, =iwB..

OE
r O, _ ioB. .
ox 0y

For TE mode with £ =0

k
B, =——E,
0,

k
B, =—E,
0,

B
%5, — kB, = —ipewk .
Oy
OB
kB, ——= =—iucsok .
r o M y
0B, 0B,

— =—lucokl .
ox Oy HEEE:
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TE modes for rectangular wave guide continued:

E (x,y)=0 and B_.(x,y)=8B, cos(mﬂxjcos (%),

a
. B . |
EX:QBy: - o - o8, = ' nﬂBOcostmﬂxjsm(—nﬂyj,
- _I_ -
a b
E =-2p o 0B, _ o mr B, sin(mﬂxjcos(—m;yj.
a

Yk kK —pee® ox (g (ar V| a
7_'_7
)

Check boundary conditions:

E peenia =0 because:  E_(x,y)=0, E (x,0)=E (x,0)=0
and £,(0,y) =E, (a,y) = 0.
B ma =0 because: B (x,0)=B8 (x,b)=0

and B (0,y) =B_(a,y) = 0.



Solution for m=n=1

B, (x, y) =B, cos(mﬂxjcos(@
a

ik (x, y) =B, onz /b cos(

() + ()

b
iE, (x, y ) =B, —omz/a Sin(—mmj COS(%) et

() + ()

iE (x, y)

T 7 !
0 ne 0.6 0.4 02 0

iE (x,y)
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Solution for m=n=1

2 2

> .2 5 mri ni

k"=k =pco” —||—| +| —

a b
18
16
14 4
k 12 4
10
S_
6_
_I__
2 -

0 5 10 15 20
Q
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Solution for m=n=1 -- more details

B.(x,y)=B, Cos(mﬂxjcos (ijyj

a

() + ()

() + ()

Poynting vector for this case:

| . 1 X y
)., = to(ear)= Lol | £

iE (x,y)=B, onz /b cos(mﬂxjsin(

_ / .
iE (x,y)=B, omr 4 sm(mﬂxjcos(

HZLB

u

Note:

(direction along the
wave guide)
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