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PHY 712 Electrodynamics
10-10:50 AM  MWF  Olin 103

Notes on Lecture 22:
Radiation from localized sources Chap. 9 (Sec. 9.1-9.3)

A. Electromagnetic waves due to specific sources

B. Dipole radiation patterns



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 2



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 3



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 4
00

2

02

0

1              

0     :monopoles magnetic No

0                     :law sFaraday'

1    :law sMaxwell'-Ampere

/                   :law sCoulomb'
:0)  0;(  form or vacuum cMicroscopi   

µε

µ

ερ

=⇒

=⋅∇

=
∂
∂

+×∇

=
∂
∂

−×∇

=⋅∇
==

c

t

tc

B

BE

JEB

E
MP

Presenter Notes
Presentation Notes
Since Maxwell’s equations were introduced and used in Chapters 6-8,  we have focused on the properties of the fields themselves.    Now we will begin to study how these fields are produced by particular sources.     The sources that we will consider are harmonic in time and their spatial form (considered to be localized in space) is represented by a multiplicative factor.   More generally, we are considering one component in the Fourier transform for the source function.   The results are quite different from the Liénard-Wiechert potentials discussed a few weeks ago.    In this slide, Maxwell’s equations are presented for the case that the sources are completely represented by the charge and current densities.
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Formulation of Maxwell’s equations in terms of vector and 
scalar potentials

t

t

tt

∂
∂

−Φ−∇=

Φ−∇=
∂
∂

+

=







∂
∂

+×∇⇒=
∂
∂

+×∇

×∇=⇒=⋅∇

AE

AE

AEBE

ABB

or                         

                          

0    0

                 0

Presenter Notes
Presentation Notes
It is convenient to express the coupled vector fields in terms of the scalar and vector potentials as we have discussed previously.



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 6

Formulation of Maxwell’s equations in terms of vector and 
scalar potentials -- continued
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Complicated coupled mess!
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Formulation of Maxwell’s equations in terms of vector and 
scalar potentials -- continued
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This choice decouples the 
equations for the scalar and 
vector potentials.

Presenter Notes
Presentation Notes
We will focus our attention on the Lorentz Gauge representations.    In this case, the scalar potential and each of the three Cartesian components of the vector potential have an inhomogeneous differential equation to solve.
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Solution of Maxwell’s equations in the Lorenz gauge -- continued
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Presenter Notes
Presentation Notes
For a spatially localized source, the physically meaningful solution can be written as an integral over the source time t’ and space r’ as discussed previously before.
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Electromagnetic waves from time harmonic sources
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Note that this is a very different situation from that 
considered in for Liénard-Wiechert radiation.

Presenter Notes
Presentation Notes
Now we specialize to the pure harmonic time dependence.     Mathematically, we will evaluate the sources with the complex function exp(-iwt), taking the real part at the end of the analysis.       Note that because we need to conserve charge, the continuity equation must be satisfied which consequently means that the current and charge densities are functionally related.
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Electromagnetic waves from time harmonic sources – 
continued:

After evaluating time integral.

Presenter Notes
Presentation Notes
Putting the form of the source term in the integral, we can first perform the integral over the source time t’, resulting in the last equation of the slide.   Notice that the full solution of the differential equation also may have a solution to the homogeneous equation as represented the f=0 contribution.



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 11

Electromagnetic waves from time harmonic sources – 
continued – using usual notation --
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Presenter Notes
Presentation Notes
From the results on the previous slide, we can explicitly write out the solutions for the scalar and vector potentials in terms of the charge and current densities.
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Electromagnetic waves from time harmonic sources – 
continued:
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Presenter Notes
Presentation Notes
In order to evaluate the equations on the previous slide, we can make use an exact expansion in terms of spherical harmonic functions and spherical Bessel and Hankel functions.    The proof of this expansion is not trivial, but some details are available in Jackson (near Eq. 9.98) and from the NIST website https://dlmf.nist.gov/10.60.      It naturally follows that the scalar potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.
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Electromagnetic waves from time harmonic sources – 
continued:
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Presenter Notes
Presentation Notes
In order to evaluate the equations on the previous slide, we can make use an exact expansion in terms of spherical harmonic functions and spherical Bessel and Hankel functions.    The proof of this expansion is not trivial, but some details are available in Jackson (near Eq. 9.98) and from the NIST website https://dlmf.nist.gov/10.60.      It naturally follows that the scalar potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.
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Electromagnetic waves from time harmonic sources – 
continued:
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Presenter Notes
Presentation Notes
It naturally follows that the vector potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.
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Forms of spherical Bessel and Hankel functions:
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Presenter Notes
Presentation Notes
These relationships of spherical Bessel functions are given on page 426 of Jackson.
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Presenter Notes
Presentation Notes
This material summarizes some of the results from Section 9.6 of Jackson
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Electromagnetic waves from time harmonic sources – 
continued:
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Presenter Notes
Presentation Notes
What is the rational/significance of the last two equations?
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Some details:
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Presenter Notes
Presentation Notes
Do you agree with these results?
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Electromagnetic waves from time harmonic sources – 
continued  -- some details:
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Presenter Notes
Presentation Notes
From this analysis, for a source confined within a sphere of radius R,   the radiation field  for the lm component of the field  has a radial form proportional to a spherical Hankel function.



03/5/2025 PHY 712  Spring 2025 -- Lecture 22 21

Electromagnetic waves from time harmonic sources – 
continued:
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Note that these results are “exact” when r is outside 
the extent of the charge and current density.

Presenter Notes
Presentation Notes
Some further relations can be derived due to the continuity equation for the current density and the charge density.
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Electromagnetic waves from time harmonic sources – 
continued  -- now considering the dipole approximation
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Presenter Notes
Presentation Notes
The previous slides gave rigorous results far from the source.    In this slide we consider further approximations.    The kr’<<1  case is also referenced as the long wavelength approximation.
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Some details -- continued:
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Presenter Notes
Presentation Notes
Dipole approximation continued.
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Electromagnetic waves from time harmonic sources – in 
the dipole approximation continued:
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Presenter Notes
Presentation Notes
Dipole approximation continued.
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Electromagnetic waves from time harmonic sources – in 
dipole approximation -- continued:
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Presenter Notes
Presentation Notes
Dipole approximation continued.
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Example of radiation source  -- exact treatment
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Presenter Notes
Presentation Notes
Comparison of exact asymptotic results with dipole approximation.
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Example of radiation source – exact treatment continued
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Relationship to dipole approximation (exact when kR0)
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Comparison of exact asymptotic results with dipole approximation – continued.    
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Summary of results
        Exact --
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Dipole approximation --
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