PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes on Lecture 22:

Radiation from localized sources Chap. 9 (Sec. 9.1-9.3)

A. Electromagnetic waves due to specific sources

B. Dipole radiation patterns
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03/5/2025

Physics

Colloquium

Short Bowel Syndrome
- using enough physics (but no more) to aid in
surgical intervention

Tell me why I care in 50 words: Small infants with SBS are more
likely to die. In SBS the small intestines don't absorb enough
nutrients. Surgery planning to cut and rearrange the guts is hard
because there are not many infants affected. Using live animals is
expensive, takes time, and doesn’t mimic SBS very well.

Hey - this is the physics department, so what about the physics?
At its root, inLcsljnarmalabsor tion is about fluid mechanics. | know
you don’t cover it in undergrad physics, but not to worry. The
nutrients get absorbed by villi and micro-villi, there’s Newtonian and
non-Newtonian fluids, computational microfluidics, and a lot of
really cutting-edge physics involved. BUT - and this is really
important - solving a problem like SBS is about listening to what
needs to be done. Physics is the tool. Our job is to use the tool
correctly. There is a time for GPU acceleration, and there is a time

for “pretty good” approximations.

Will I be qualified to do surgery after this talk? Seriously - you just
asked that? No!

Why should I bother going? I'm not a physics major and/or I'm not
a pre-med.

It's fascinating and it matters. [ mean, [ didn't know angthing about
this until about two years ago when Meagan told me about the
problem. I'm a physics guy but never took biology after 9th grade.
Dr. Rosenberg is a surgeon in residency but only took first year
physics. This problem is about checking egos at the door and solving
a problem to save infant lives. I'll scare everyone w1l.h some fancy
physics talk (and yes, some equatlons} earlﬁf on and also talk
anatomy. More importantly, I'll talk about how, to help a surgeon
plan surgery, you need to keep your eye on what's important.

Anything you want to warn me about? Well, we're talking about
intestines, so there will be dla%‘rams and a picture or two of the
intestines, and a short video of intestines squishing around
(per‘iswlsis}. You can close your eyes on those slides. No gut pieces

will be passed around.

Fancy buzzwords you can use to impress your friends:

hininfarmatire camnntatinnal and eveteme hinlaogy comnntatinnal

- Thursday -
March 6, 2025

Mark Roberson,
PhD, PMP
President

Goldfinch Sensor
Technologies and
Analytics, LLC

Reception 3:30
Olin Lobby

Colloquium 4:00
Olin 101
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17 |Fri: 02/21/2025  Chap. 7 Electromagnetic plane waves #16  02/24/2025

18 Mon: 02/24/2025 Chap. 7 Electromagnetic response functions #17 102/26/2025
19 |Wed: 02/26/2025 Chap. 7 Optical effects of refractive indices #18 02/28/2025
20 |Fri: 02/28/2025 Chap. 8 Waveguides
21 |Mon: 03/03/2025 (Chap. 8 Waveguides #19 |03/05/2025
22 \Wed: 03/05/2025 |Chap. 9 Radiation from localized sources Iﬁg:gg 03/07/2025
23 |Fri: 03/07/2025 Review

Mon: 03/10/2025 |No class Spring Break

Wed: 03/12/2025 No class Spring Break

Fri: 03/14/2025  No class Spring Break

Mon: 03/17/2025 No class Take-home exam

Wed: 03/19/2025 No class Take-home exam

Fri: 03/21/2025  No class Take-home exam
24 |Mon: 03/24/2025 Chap. 9 Radiation from localized sources
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Maxwell’s equation

Microscopic or vacuum form (P —O, M —O):

Coulomb's law : V-E=p/g,
1 OE
Ampere-Maxwell'slaw: VxB-—— % = 1,d
c ot
Faraday's law : VxE+ %—B =0
[
No magnetic monopoles: V:-B=0

1

oy
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Presenter Notes
Presentation Notes
Since Maxwell’s equations were introduced and used in Chapters 6-8,  we have focused on the properties of the fields themselves.    Now we will begin to study how these fields are produced by particular sources.     The sources that we will consider are harmonic in time and their spatial form (considered to be localized in space) is represented by a multiplicative factor.   More generally, we are considering one component in the Fourier transform for the source function.   The results are quite different from the Liénard-Wiechert potentials discussed a few weeks ago.    In this slide, Maxwell’s equations are presented for the case that the sources are completely represented by the charge and current densities.


Formulation of Maxwell’'s equations in terms of vector and
scalar potentials

V:-B=0 — B=VxA
VxE+6—B—O :>V><(E+8—Aj 0
Ot ot
E+8—A VO
ot
or E——V®—8—A

Ot


Presenter Notes
Presentation Notes
It is convenient to express the coupled vector fields in terms of the scalar and vector potentials as we have discussed previously.


Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued

V-E=pl/g,:
o(V-A)
~V°® - =pl¢
Py P&
1 OE
VxB-— = u,J
c* Ot Ho
Vx(VxA)+1 8(VCD)+82A = u.Jd
2\ ot o |t

Complicated coupled mess!



“" Formulation of Maxwell’s equations in terms of vector and
scalar potentials -- continued

: 1 oD
Lorenz gauge form -- require: V-A, +— (%L =0
c
1 0°D
VD, +— 3 = =pl & This choice decouples the
¢ 2t equations for the scalar and
1 0°A i
VA, + : 2L = uJ vector potentials.
c” ot
General equation form:
2
(Vz —Lzé—zj\P:—sz )
c” ot (D(r,1) p(r,t)/ (4rs,)
Bt = A (r,1) Frat) = w,J (r,1)/ (4r)
" A, () Hot ,(x,1) /1 (47)
(A (r,1) |4y (x,t) ] (47r)



Presenter Notes
Presentation Notes
We will focus our attention on the Lorentz Gauge representations.    In this case, the scalar potential and each of the three Cartesian components of the vector potential have an inhomogeneous differential equation to solve.


®
Solution of Maxwell’'s equations in the Lorenz gauge -- continued

(?@gt;rgt)::‘ : ' /c))
r—r

St —r—v

Solution for field ¥ (r, 7):
‘P(r,t): Y., (r,t)+

o ]
jd%jdth_ﬂ

5(r'—(r —%\r —r'D £,



Presenter Notes
Presentation Notes
For a spatially localized source, the physically meaningful solution can be written as an integral over the source time t’ and space r’ as discussed previously before.


Qlectromagnetic waves from time harmonic sources
Charge density: p(r,t)= 9%(,5(1‘, ) e‘”‘”)

Current density: J(r,t) — gn(j(l., a)) e—ia)t)

Note that the continuity condition applies:

@Og’t) +V-J(r,t)=0 = —-iwp(r,0)+V-J(r,0)=0
Generalsource: f(r,¢)= ER(? (r, w)e_m)
~ |
For f(r,a))z 1 p(r,a))
&,
or f(l‘,a))zf—()ji(r»w)
T

Note that this is a very different situation from that
considered in for Liénard-Wiechert radiation.
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Presenter Notes
Presentation Notes
Now we specialize to the pure harmonic time dependence.     Mathematically, we will evaluate the sources with the complex function exp(-iwt), taking the real part at the end of the analysis.       Note that because we need to conserve charge, the continuity equation must be satisfied which consequently means that the current and charge densities are functionally related.


Electromagnetic waves from time harmonic sources —
continued:

P(r,t)="V¥,_,(r,1)+

jaﬁr'jdt' ‘rir' 5(t'—(t—é‘r—r'

Y(r,wle " =¥,

]
[a@’r|at Ty

—it

jjf(r',f)
(r,0)e ™ +

) (t'—(t 1 ‘r —r' D?(r' ] a))e_i”t'
c

iQ|r—r’|
c ~Y

/()™

e

- q’fZO(r,w)e_i”t + Jd3r'

‘r —r'
After evaluating time integral.

03/5/2025 PHY 712 Spring 2025 -- Lecture 22 10


Presenter Notes
Presentation Notes
Putting the form of the source term in the integral, we can first perform the integral over the source time t’, resulting in the last equation of the slide.   Notice that the full solution of the differential equation also may have a solution to the homogeneous equation as represented the f=0 contribution.


@Ieotromagnetic waves from time harmonic sources —

continued — using usual notation --

For scalar potential (Lorenz gauge, k = —)
c

zk|r r |

jd3 —p(r, ),

O (r,0)=D,(r,m)+

47,

2
where (Vz + ?—2]&)0 (r,@)=0

For vector potential (Lorenz gauge, k = 2)

c
~ N zk|r r|
A(r,a)):AO( jd3 v J(l’ C())



Presenter Notes
Presentation Notes
From the results on the previous slide, we can explicitly write out the solutions for the scalar and vector potentials in terms of the charge and current densities.


Electromagnetic waves from time harmonic sources —
continued:

Useful 1dentity:

ik|r—r
= lkzjl (kl"< )hl (kr>)Ylm (f)Y Im (f")
Im

Spherical Bessel function: j, (&r)
Spherical Hankel function: %, (kr) = j, (kr) +in, (kr)

47z‘r—r'

CD(r, a)) = &)O(r, a))+ Z%m (r, o), (f')

b (1, )= fd3rpr @), (er )y (k. )Y " (')


Presenter Notes
Presentation Notes
In order to evaluate the equations on the previous slide, we can make use an exact expansion in terms of spherical harmonic functions and spherical Bessel and Hankel functions.    The proof of this expansion is not trivial, but some details are available in Jackson (near Eq. 9.98) and from the NIST website https://dlmf.nist.gov/10.60.      It naturally follows that the scalar potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.


Electromagnetic waves from time harmonic sources —
continued:

Note that:

@ (7, 0) jd3r'p ') j, (ke )b (k)Y ()

=—I Ay, (¥)[r* dr p(r'.o) (ke ) (.
€9

[r2dr p(xo)j, (ke by (k) = h (kr)j;r'z dr B(r o) j, () +

jy (k) [ dr' p(x ', 0) by (k)


Presenter Notes
Presentation Notes
In order to evaluate the equations on the previous slide, we can make use an exact expansion in terms of spherical harmonic functions and spherical Bessel and Hankel functions.    The proof of this expansion is not trivial, but some details are available in Jackson (near Eq. 9.98) and from the NIST website https://dlmf.nist.gov/10.60.      It naturally follows that the scalar potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.


Electromagnetic waves from time harmonic sources —
continued:

Useful 1dentity:

ik|r—r
= lkzjl (kl"< )hl (kr>)Ylm (f)Y Im (f")
Im

Spherical Bessel function: j, (&r)

Spherical Hankel function: %, (kr) = j, (kr) +in, (kr)

47z‘r—r'

mn~/

A(r’ 0)): KO(rﬂ 0))+Z§Zm(7’,a) Im (f.)
Im

a, (r,0)=iku, j- d*r' I, o)j, (ke Yo, (ke )Y i (£)


Presenter Notes
Presentation Notes
It naturally follows that the vector potential can be expressed as a sum of spherical harmonic functions times corresponding radial forms.


.

Forms of spherical Bessel and Hankel functions:

joo)=m ()=
X ix
i (x) _ smgx) B cos(x) h (x) _ _(1 N i j o
X X X)X
(3= (% _lj gin()—220) () {1 L3 j
XX X x x)x
Asymptotic behavior:

G

x<<1 :>j,(x)~(21+1)!!

o>l =k (x)~ ()


Presenter Notes
Presentation Notes
These relationships of spherical Bessel functions are given on page 426 of Jackson.


0.5
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Digression on spherical Bessel functions --

Consider the homogeneous wave equation
2
0 ~
(Vz +C—2jq)0(r,a)) =0

Suppose @, (r, ) =y, (1Y, (F)
= v, (r) must satisty the following for k =w/c:

(d_ergd I(+1) ]%m(r) 0

dr*  rdr r

General spherical Bessel function equation:

£d2 2d I+

24 N +1jwl(x)=0 =y, (r) = w,(kr)

dx*  x dx X


Presenter Notes
Presentation Notes
This material summarizes some of the results from Section 9.6 of Jackson


.

Electromagnetic waves from time harmonic sources —
continued:

Cf(r, a)) = 5130(1‘, a))+ Z%m (r, o), (f‘)

G (r,0) =2 [ &1 (e, Y ()

O

K( ) A (r @ +Zalm v, Zm(f')

a, (r,0)=iku, j d*r'I(e', @)j, (ke Y, (ke )Y i (£')
For r >> (extent of source)

Girs0) = S )| Bl ) )

0

a, (r,0)~ikuh, (kr)j d’r' j(r' @), (k)Y 1 (£")


Presenter Notes
Presentation Notes
What is the rational/significance of the last two equations?


= Some detalils:

O (r,0)=0,(r,0) +Zg7)lm (r,0)Y,, (F)

@, (7, ) Id3r p(r'w)j, (k)b (kr)Y",, (F')

:%IdQ’Y*lm (f’)(hl(h)jr'z dl”'j;(k’”')ﬁ(r'aa))"‘jz(kr)j’” dr'h (kr) (l‘ a))]

0

For » >> (extent of source)

G r.0)= 2y k)| B ) O o)

0

a, (r,0)~ikuh, (kr)j d’r' j(r' @), (k)Y (F')


Presenter Notes
Presentation Notes
Do you agree with these results?


.

Electromagnetic waves from time harmonic sources —
continued -- some detalls:

@, (1, 0) Jd r'p(r,) j, (k)b (k)Y (F')

zk

(h (kr)j rdr'p, (r',)j,(kr') + Jl(kr)j r2dr'p, (', @) (kr )j
80

A

where p,, (r'o) = [dQ5(r" @)Y, () t £
note that for » > R, where p(r,w) =0, >R

5, (roo)~ X (k) j 2 dr' p,, (v o), (k')

&0

Similar relationships can be written Y

for a,, (r,®) and J(r', @). \
X


Presenter Notes
Presentation Notes
From this analysis, for a source confined within a sphere of radius R,   the radiation field  for the lm component of the field  has a radial form proportional to a spherical Hankel function.


.

Electromagnetic waves from time harmonic sources —
continued:

For » >> (extent of source)

~ k ~ (Nt (A

o, (r, o)~ ;— h (kr)_[ ’r'pr', o), (k)Y ()

0

a,,(r, o)~ ikpyh (kr)[ d*r' I (', @), (k') "1 (F)

Note that these results are “exact” when ris outside
the extent of the charge and current density.


Presenter Notes
Presentation Notes
Some further relations can be derived due to the continuity equation for the current density and the charge density.


Note that p(r',@)and J(r', @) are connected via the
continuity condition: —i@ p(r,m)+V - j(r ®)=0

%m(r,a)) ;ih (k7) Ja’ rp(r', ), (k'Y i (F)

) T, 0)-5 (7, (k) ()

e,




> . : .
Electromagnetic waves from time harmonic sources —

continued -- now considering the dipole approximation

Various approximations:

ikr
[+1 €

k 1 hikry=(—i) —
r>> = hy (kr)~(—i) .

. o k)
kr'<<l = j(kr )~(21+1)!!
Lowest (non-trivial) contributions in / expansions:
s k N kr' « .
galm(r,a))z’g—@(kr)jd%'p(r',w)%”ylm(r')

0

a,, (r,a)) =ik u,h, (kr)jd3r'j(r',a))Y*OO (f")


Presenter Notes
Presentation Notes
The previous slides gave rigorous results far from the source.    In this slide we consider further approximations.    The kr’<<1  case is also referenced as the long wavelength approximation.


Some detalils -- continued:  (3ssuming confined source)

Recall continuity condition: —iw p(r,®)+V-J(r,0)=0

—ior p(r,w)+rV -j(r,a))

1 ~
d’rr p =—|d’rrv-J
J. rrp(r,m) ia)'[ rrv-J(r,o)
1 ~
——— \d’» ] —
ia)-“ r J(r,0)=p(»)

Here we have used the 1dentity:
V- (yV)=Vy -V+y(V-V)
We have also assumed that

lim (xJ(r,®)) =0

ryr—>©


Presenter Notes
Presentation Notes
Dipole approximation continued.


.

Electromagnetic waves from time harmonic sources — in
the dipole approximation continued:

Lowest order contribution; dipole radiation:

Define dipole moment at frequency w:

p(w)zjd3r rﬁ(r,w):—% d’r J(r,0)

- ik X i e
0 _ 1
(r,a)) 472801)(60) r( +krj 2

Note: In this case we have assumed a restricted extent
of the source such that kr’<<7 for all r’ with significant
charge/current density.



Presenter Notes
Presentation Notes
Dipole approximation continued.


.

Electromagnetic waves from time harmonic sources — in
dipole approximation -- continued:

E (r,o)= —V®d (r,m)+ ia)A(r, )

B {kz ((f'xp(a)))xf‘)Jr[%(f.p(wz))_p(w)}(l—ikr)]

dre, r

~

B(r, o) :VxA(r,a))
ikr

__ L e kz(fxp(a)))(l—iikrj

o 2
dre,c”

Power radiated for kr >>1:

dP ., r o (E X
o= (S)., :2u0r'm(E(r"")XB (r.0))



Presenter Notes
Presentation Notes
Dipole approximation continued.


Example of radiation source -- exact treatment

J(r,o)=2] """ plr,m)= ‘.]0
— IR

—-r/R
cosBe’

o0

A(r,0)=12J, (iku, )j rdrte " hy(kr. )j, (kr.)

0

D(r,m)=— ok COSHJ‘V'z dr'e””" " n (kr. )j, (kr.)
NG
Evaluation for » >> R
- eikr 2R3

A(l', a)) =12, 1,

r (1+k2R2)2

~ J ok o ] 2R’
q)(r’w):goa) er (1+ l j (1+k2R2)2
0



Presenter Notes
Presentation Notes
Comparison of exact asymptotic results with dipole approximation.



Example of radiation source — exact treatment continued
Evaluation for » >> R :

N A ikr 2R3
Alr, @)= p, er (1+k2R2)2

ikr . 3
D(r,w)= Ik 056 (1+Lj ( =L
1

£, r kr +k2R2)2
Relationship to dipole approximation (exact when kR=>0)
1 ~ 87TRJ
w)=|d’rrp(r,0)=——|d’r J(r,0)=- 07
p(0)=[dr rp(r.0)=—— [@'r J(r.w)= "

ikr

Corresponding dipole fields: A (r,w)=- Ly p(w) ‘

47 4

- ik . i e

d —_ 31
(r,a)) 47Z80p(w) r( +krj r



Presenter Notes
Presentation Notes
Comparison of exact asymptotic results with dipole approximation – continued.    



Summary of results
Exact -- Evaluationfor» >> R :

N eikr 2R3
Alr,w)=12J 1
o)t S 2
ikr . 3
D(r,w)= Jok cos = (1+ l j =L -
&y ¥ kr (1—|—k2R2)

Dipole approximation --

- 1 . 87R°J, ,
p(a))zjaﬂr rp(r,a)):—gjaﬁr J(r,m)=- ﬂia) 07

. ikr ikr
Ar,0)=- Z’Z;’:)p(a)) er = 2R’ 11y er

. . ikr 3 .
CD(I‘,CO):_ A p(a))-f'(1+ : jer =2]§Z)‘)kcosé’(l+
0
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