
PHY 712 Electrodynamics
10-10:50 AM  MWF  in Olin 103

Notes for Lecture 25:

Complete reading of Chap. 9 & 10

A. Antenna radiation

B. Superposition of radiation from 
multiple sources

C. Scattered radiation
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Presenter Notes
Presentation Notes
In this lecture, we  will continue to focus on radiation from sources with pure harmonic time dependence with frequency omega, also considering effects of superposition of multiple such sources (leading to interference) and also considering (re)radiation due to scattering of electromagnetic waves.
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Presenter Notes
Presentation Notes
The assigned homework deals with radiation from an antenna with a slightly different configuration than covered in the textbook and in the lecture notes.  
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Electromagnetic waves from time harmonic sources – 
review:
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Presenter Notes
Presentation Notes
Review of equations that we have been using for the time Fourier transforms of the scalar and vector potentials due to their corresponding Fourier transforms of the charge and current densities.
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Previously, we made use of an expansion of the kernel in 
terms of Bessel funcsions and spherical harmonics; now we 
consider and alternative approach:
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Presenter Notes
Presentation Notes
Specifically, consider an antenna.     For convenience, we are using a slightly different notation from the previous lecture as noted at the top of the slide.
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( ), / IωJ r

Presenter Notes
Presentation Notes
The plot indicates how the current varies along the z axis of the antenna for the center-fed configuration.



Consider antenna source -- continued
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Presenter Notes
Presentation Notes
Evaluation of the vector potential far from the antenna.



Consider antenna source -- continued
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Presenter Notes
Presentation Notes
Some details for evaluating the power per unit solid angle.



Consider antenna source -- continued
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Presenter Notes
Presentation Notes
Plot of the power distribution as a function of angle for this case.



Consider antenna source -- continued
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Presenter Notes
Presentation Notes
Polar plots of the power distribution.



Radiation from antenna arrays
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Note that these antennas are 
all “in phase”.

Presenter Notes
Presentation Notes
Now consider the case of several antennas, in this case each antenna is oriented along the z-axis and 2N+1 of them are arranged in a line along the x-axis.
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Radiation from antenna arrays -- continued
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Presenter Notes
Presentation Notes
Analyzing the same equations as before, keeping the leading terms for the limit that krinfinity.   Here we see that the x-axis dependence involves evaluating a geometric series which can be done analytically as shown.
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Digression – summation of a geometric series
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Radiation from antenna arrays -- continued
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Presenter Notes
Presentation Notes
Carrying out the integrations and simplifying the expressions, we get the results.   The plots here refer to phi=0,  which corresponds to the observation of the radiation in the x-z plane with theta=pi/2 along the x-axis .
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Presenter Notes
Presentation Notes
Plot of the power for another case.    Obviously, there is a lot of variety with antenna arrays which are used extensively for communications and other technologies.
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Dipole radiation in light scattering by small (dielectric) particles
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Presenter Notes
Presentation Notes
Now consider a different radiation source – that is re-radiation  from matter interacting with light (such as sunlight).   Here we will simplify the analysis and assume that the matter is in the form of uniform sphere.    This topic is covered in Chapter 10 of Jackson.
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Dipole radiation in light scattering by small (dielectric) particles

Einc
Hinc

Hsc

Esc

( )

( )

2

0

22 4
2

2 2
0 00

Scattering cross section:
ˆ

ˆˆ ˆ ˆ, ; , ˆ

ˆ
ˆ                         

ˆ 4

sc avg

inc avg

sc

inc

rd
d

r k
E

σ

πε

⋅
=

Ω ⋅

⋅
= = ⋅

⋅

0
0

r S
r ν k ν

k S

ν E
ν p

ε E

( )( )

ˆ
inc 0 0

inc inc
0

2
sc

0

sc sc
0

ˆ    
1 ˆ

In electric dipole approximation:
1 ˆ ˆ      

4
1 ˆ

ik

ikr

E e

c

ek
r

c

µ

πε

µ

⋅=

= ×

= × ×

= ×

0k r

0

E ν

H k E

E r p r

H r E

Presenter Notes
Presentation Notes
We will assume that the incident light is in the form of an ideal plane wave, and analyze the re-radiated light as a spherical wave far from the particle itself.   The unit vectors epsilon_0 and epsilon reference the incident polarization of the light and the scattered polarization direction of the light, respectively.     The cross section is defined as the scattered power per unit incident power.
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Recall previous analysis for electrostatic case:
Boundary value problems in the presence of dielectrics 
– example:
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Presenter Notes
Presentation Notes
Analyzing the source of re-radiation, we need to recall how a spherical dielectric of radius a interacts with a constant electric field.   We can use the results we obtained in Chapter 4 when we considered the situation as an electrostatic boundary value problem.     Here the z direction is the direction of the incident electric field, not the wave vector direction.
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Boundary value problems in the presence of dielectrics 
– example -- continued:
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Presenter Notes
Presentation Notes
These are the results from the electrostatic case discussed previously.
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Boundary value problems in the presence of dielectrics 
– example  -- continued:

( )

( ) θ
εε

εε

θ
εε

cos 
/2

1/ 

cos 
/2

3

02

3

0

0

0
0

E
r
ar

rE



















+

−
−−=Φ









+

−=Φ

>

<

r

r

Φ
(r

,θ
=0

)

r/a

ε/ε0=

10 2 1

3 0
0 0

0

Induced dipole moment:

/ 14
/ 2

a ε επ ε
ε ε

 −
=  + 

p E

Presenter Notes
Presentation Notes
Continued results obtained previously for the electrostatic problem.
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Estimation of scattering dipole moment:
Suppose the scattering particle is a dielectric sphere 
with permittivity ε and radius a:   
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Presenter Notes
Presentation Notes
Jumping back to the scattering problem, assuming that the same mathematics can be translated to this case --     Here we have used bold nu to reference the polarization directions.    These directions are always perpendicular to the light propagation directions.     The epsilons indicate the permittivity functions which are functions of the harmonic frequency of the light involved.     The final result was derived by Lord Raleigh.
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https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

Presenter Notes
Presentation Notes
Some information about Lord Rayleigh on the web.

https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh
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Scattering by dielectric sphere with permittivity ε and radius a:

( )
2

24 6 0

0

2
4 6 0

0 0

2

0

/ 1ˆˆ, ; ,
/ 2

/ 1                        s

ˆ ˆ ˆ ˆ

 co
/ 2

d k a
d

k a

ε εσ
ε ε

ε ε θ
ε ε

−
== ⋅

Ω +

−
=

+

0νr k ν ν ν
ν̂

0ν̂

r̂

0k̂
θ

For Einc polarized in scattering plane:

θ

Presenter Notes
Presentation Notes
In this analysis, we consider the case where the incident wavevector (along the vertical axis) and the polarization  direction (epsilon0) are in the same plane as the observed scattered light (direction of \hat{r}).    In this case , the dot product of the incident and scattered polarizations give a factor of cos(theta) as show.
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Scattering by dielectric sphere with permittivity ε and radius a:
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Presenter Notes
Presentation Notes
In this case, the incident wavevector (along the vertical axis) and the observed scattered light (direction of \hat{r}) are as before and again define the scattering plane.   However, the polarization  direction of incident light (epsilon0) and the polarization direction of the scattered light (epsilon) are both perpendicular to the scattering plane and thus are parallel to each other, given 1 for their dot product.      The last result indicates the cross section of the total scattered light assuming both polarizations are equally likely.



03/26/2025 PHY 712  Spring 2025 -- Lecture 25 27

Scattering by dielectric sphere with permittivity ε and radius a:
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Presenter Notes
Presentation Notes
The plot shows the angular dependence of the scattered light as a function of the angle theta.
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4

1
λ

Presenter Notes
Presentation Notes
In addition to the angular dependence of the scattered light, Raleigh scattering depends of the wavevector as k4 which has the corresponding wavelength dependence indicated on this slide.       The figure from the web shows the variation of wavelength for visible light.   The analysis of Raleigh scattering thus tells us why the sky at mid day is blue and why it tends to be red at sun rise and sunset.
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Brief introduction to multipole expansion of electromagnetic 
fields (Chap. 9.7)
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Presenter Notes
Presentation Notes
In the next few slides, we go over material presented in Section 9.7 of your textbook.     I have personally never used this formalism, but recognize it as a powerful tool for analyzing fields from localized sources in terms of the fields themselves rather than using scalar and vector and scalar potentials.  Please review this material as time permits.
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Multipole expansion of electromagnetic fields -- continued
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Multipole expansion of electromagnetic fields -- continued
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Multipole expansion of electromagnetic fields -- continued

( )
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*
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Orthogonality condition
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General expansion of fields:
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Multipole expansion of electromagnetic fields -- continued

2
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2 20
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Time averaged power distribution of radiation far from source:

( (
2

For a pure multipole radiation  with either  or :

(
2

ˆ( ) , ) , )

(

, )

l E M
lm lm lm lm

E
lm lm

lm lm

lm

M

lm

ZdP a a
d k

a a
Zd

i

P a
d k

θ φ θ φ

θ φ

θ

+  − × +=

=

 Ω

Ω

∑ X X

X

X

r

( )( ) ( ) ( )( ) ( )

2 2

1
2 22

1
1 2 1 1

2
, )

( 1) lm l m l mm Y l m l m Y l m l m Y
l l

φ − +
 = + + − + + − + + 
 +



03/26/2025 PHY 712  Spring 2025 -- Lecture 25 34

( )2 2 22 2
10 11 1 1, )          

For exa
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( ) ( )2 2 22 2 2 4 4
20 21 22

For example:   2
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