PHY 712 Electrodynamics
10-10:50 AM MWF in Olin 103
Notes for Lecture 25:

Complete reading of Chap. 9 & 10

A. Antenna radiation

B. Superposition of radiation from
multiple sources

C. Scattered radiation
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Presenter Notes
Presentation Notes
In this lecture, we  will continue to focus on radiation from sources with pure harmonic time dependence with frequency omega, also considering effects of superposition of multiple such sources (leading to interference) and also considering (re)radiation due to scattering of electromagnetic waves.
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24 Mon: 03/24/2025 |Chap. 9 Radiation from time harmonic sources #20 103/26/2025
25 Wed: 03/26/2025 |Chap. 9 & 10 Radiation from scattering #21 103/28/2025
26 |Fri: 03/28/2025 |Chap. 11 Special Theory of Relativity
27 Mon: 03/31/2025 |Chap. 11 Special Theory of Relativity
28 Wed: 04/2/2025 |Chap. 11 Special Theory of Relativity
29 (Fri: 04/4/2024 Chap. 14 Radiation from accelerating charged particles
30 (Mon: 04/07/2025 |Chap. 14 Radiation from accelerating charged particles
31 Wed: 04/09/2025 |Chap. 14 Synchrotron radiation and Compton scattering
32 |Fri: 04/11/2025 |Chap. 13 & 15 |Other radiation -- Cherenkov & bremsstrahlung
33 (Mon: 04/14/2025 |Special Topics
34 Wed: 04/16/2025 |Special Topics
39 |Fri: 04/18/2025 Presentations |
Mon: 04/21/2025 |Special topics
Wed: 04/23/2025 Presentations ||
Fri: 04/25/2025 Presentations Il
36 Mon: 04/28/2025 Review
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PHY 712 -- Assignment #21

Assigned: 3/26/2025 Due: 3/28/2025
Continue reading Chapter 9 (Sec. 9.1-9.4) in Jackson .

1. Problem 9.16(a) in Jackson . In this case, "exactly" really means following the approach
discussed in Sec. 9.4 using the current density given in this problem. You might want to
draw a diagram to indicate how 6 is defined.
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Presenter Notes
Presentation Notes
The assigned homework deals with radiation from an antenna with a slightly different configuration than covered in the textbook and in the lecture notes.  



03/26/2025

Physics

Colloquium

Probing the Spectroscopy and Dynamics of
Polarons and Excitons in Organic Materials

Polarons and excitons play a central role in the electronic,
optical, and transport properties of molecular aggregates, thin
films and crystals, semiconducting polymers, and hybrid
organic-inorganic semiconductors. In such n-conjugated
systems, charged (polarons) and neutral (excitons) excitations
are strongly coupled to the nuclear degrees of freedom,
underscoring the importance of electron-phonon interactions.

In the first half of my talk, I will present a theory describing the
spatial coherence length of polarons in disordered organic
materials, revealing a simple relationship between the oscillator
strength of the infrared absorption band and the polaron
coherence function. TheHolstein-type Hamiltonian, represented
in a multiparticle basis set, has been successful in quantitatively
reproducing several recently measured spectra recorded in
doped and undoped polymer films, confirming the association of
an enhanced peak ratio with extended polaron coherence.
Emphasis will be placed on understanding the fundamental
nature and origin of the components polarized along the intra
and inter-chain directions and their dependence on structural
and conformational disorder, vibronic coupling, and Coulomb
binding.

In the second half of my talk, we will explore the similarities and
differences in the spectral response of excitons and polarons in
organic materials, with a particular focus on how simple optical
probes like steady-state absorption and photoluminescence can
be used to extract information about the exciton and polaron
coherence lengths -quantities which are critical for
understanding nanoscale energy and charge transport processes
in emergent semiconducting materials.

- Thursday -

March 27,
2025

Prof. Raja Ghosh
Department of Chemistry
and Physics
North Carolina State
University

Reception 3:30
Olin Lobby

Colloquium 4:00
Olin 101
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Electromagnetic waves from time harmonic sources —
review:

For scalar potential (Lorenz gauge, k = 2)
C
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dre, r—r'
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For vector potential (Lorenz gauge, k = Q)
c

ikk—rﬁ
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Presenter Notes
Presentation Notes
Review of equations that we have been using for the time Fourier transforms of the scalar and vector potentials due to their corresponding Fourier transforms of the charge and current densities.


Previously, we made use of an expansion of the kernel in

terms of Bessel funcsions and spherical harmonics; now we
consider and alternative approach:

Fields from time harmonic source:
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Consider antenna source (center-fed)
Note — these notes differ from previous formulation d/2 <-> d

Z
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Presenter Notes
Presentation Notes
Specifically, consider an antenna.     For convenience, we are using a slightly different notation from the previous lecture as noted at the top of the slide.


'S
Consider antenna source -- continued

~

J(r,0)=2sin(k(d-|2))5(x)S(y) for —d<z<d

for kEa):mz; n=1273...

z
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Presenter Notes
Presentation Notes
The plot indicates how the current varies along the z axis of the antenna for the center-fed configuration.


Consider antenna source -- continued

~

J(r.0)=2sin(k(d-|]))5(x)5(y) for —d<z<d

=2

C

Vector potential from source:

zk‘r r ‘

A(r,0)= jd3 ! -J (r',0)

;N - Hy € 30—kt
For r >> d A(r,a))~4ﬂ - jd re " J(r',m)
ik

A(r,a))zi’u‘) ]Idz' ~ikzlcos0 sm(k(d

z


Presenter Notes
Presentation Notes
Evaluation of the vector potential far from the antenna.


.

Consider antenna source -- continued

Alr,0)~ 7 Hy € []idz g ot sin(k(a’ —‘z‘))

dr r 2

A4 kr

In the radiation zone :

ﬁ(r,a))—VxX(r a)) ikt x K( )
E(r, )=~ —zkcrx(rxA (r,®) )
daP 1

Q- 2u,

dP _ pyc F{cos(kd cosf)— cos(ka’)}
dQ 8z’

sin &

2
rzf-i]%(ﬁ(r,a))x B*(r,a))): ke 2| A

Lt St 2]{ cos(kd cos 6;)—cos(kd )
sin”

|


Presenter Notes
Presentation Notes
Some details for evaluating the power per unit solid angle.


.

Consider antenna source -- continued

dP  p,c ]z_cos(kd cos@)—cos(kd )
aQ 8z° | sin &
for k==="2; n=1,23..
c d
g
n=
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Presenter Notes
Presentation Notes
Plot of the power distribution as a function of angle for this case.


Consider antenna source -- continued

" cos(kd cos@)—cos(kd )

sin @
For kd =nr:

n=1 n=2
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Presenter Notes
Presentation Notes
Polar plots of the power distribution.


Radiation from antenna arrays

20 =

~

2N+1

j(r,a)):ilsm( ( ‘z‘))Z& ~(N+1-j)ap(y) for —d<z<d

Note that these antennas are
r=2 - nﬂ; n=123... all “in phase”.

C
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Presenter Notes
Presentation Notes
Now consider the case of several antennas, in this case each antenna is oriented along the z-axis and 2N+1 of them are arranged in a line along the x-axis.


®
Radiation from antenna arrays -- continued

Vector potential from array source :
1k|r r'| ikr

N Hy 3 , € ' e Hy € 3 4 =ikt Yo
Alr,m)= 4ﬂjd ‘r r‘J(r a))~4ﬂ - jd re T I(r', o)

2N+1

j(r,co)=i]sm( ( ‘ZD)Z5 —(N+1-j)ap(y) for —d<z<d

tkr N g
K | 5 H, € —ikajsin@cos ¢ Ild —ikzcos® _: J\d —
(r a)) 247[ - [J.ZNQ j __[Zze s1n(( ‘Z‘))

i J-ikajsincosg _ sin(% ka(ZN + l)sin 6 cos ¢)
= sin(! kasin 6 cos @)



Presenter Notes
Presentation Notes
Analyzing the same equations as before, keeping the leading terms for the limit that krinfinity.   Here we see that the x-axis dependence involves evaluating a geometric series which can be done analytically as shown.


Digression — summation of a geometric series

N
Z e—iAj _ —lA Z e—lA] +e —lA(N—i—l)
j=N
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N
o —iA A2 —iAd

=N l—e e l—e

2isin(A(N +1/2))

2isin(A/2)
sin(A(N+1/2))
sin(4/2)
N | sin (4 ka (2N +1)sin 6 cos ¢)

—ikajsin @ cos
3 e

= sin (4 kasin @ cos @)




.

Radiation from antenna arrays -- continued
In the radiation zone :

~~

B(r,0)=VxA(r,0)~ ikt x A(r, »)
E(r,®)~ —ikct x (f' x Al(r, a)))

P _ i i o) B (e 0) = Ox( of -f-Alr.o) |

dQ  2u,

dQ 812

2u
dP  u,c [2[cos(kd cos ) - cos( ka’ { n(!ka(2N +1) s1n6?cos¢)}
sin &
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dQ
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Presenter Notes
Presentation Notes
Carrying out the integrations and simplifying the expressions, we get the results.   The plots here refer to phi=0,  which corresponds to the observation of the radiation in the x-z plane with theta=pi/2 along the x-axis .


dP  p,c P cos(ka’cos&’)cos(kd)}z{Sin(éka(2N+I)Sin¢9005€0) 2

dQ 87’ sind sin (1 kasin 6 cos )

Example for =0, N =10, kd =7 =2ka

4-
3
>
.
0 20 40 60 80 100 120 140 160 180

v

Additional amplitude patterns can be obtained by
controlling relative phases of antennas.
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Presenter Notes
Presentation Notes
Plot of the power for another case.    Obviously, there is a lot of variety with antenna arrays which are used extensively for communications and other technologies.


Now — consider a different radiation source ---
Dipole radiation in light scattering by small (dielectric) particles

>
2 @ ~ E
l — Hsc
Einc
Hinc
A ikK -1 |
Einc = SOEOe ’ Hinc — —kO ><]:‘Cinc
HoC
In electric dipole approximation :
1 ikr A i 1 i
E.=——k —(Fxp)xf) H, =——FxE,

SC 4
T& v JINe


Presenter Notes
Presentation Notes
Now consider a different radiation source – that is re-radiation  from matter interacting with light (such as sunlight).   Here we will simplify the analysis and assume that the matter is in the form of uniform sphere.    This topic is covered in Chapter 10 of Jackson.


%ipole radiation in light scattering by small (dielectric) particles

>
; ‘ - ESC A ikﬁo-r
> ~ H Einc = VOEOe
l sc L.
Einc Hinc = _kO X Einc
H HoC
inc . . . .
In electric dipole approximation:
. . ikr
Scattering cross section: E = I 2 & ((r xp)xf-)
- C dng, v
do A AL A r r.<SSC>avg 1
—(rﬁv;k()?v()): " Hsc:_fXESC
dQ kO ) <Sinc >avg HoC
n 2
I”Z V- Esc k4 A ‘2
R 2 2
0 U (47e,E, )



Presenter Notes
Presentation Notes
We will assume that the incident light is in the form of an ideal plane wave, and analyze the re-radiated light as a spherical wave far from the particle itself.   The unit vectors epsilon_0 and epsilon reference the incident polarization of the light and the scattered polarization direction of the light, respectively.     The cross section is defined as the scattered power per unit incident power.


Recall previous analysis for electrostatic case:

Boundary value problems in the presence of dielectrics
— example:

\AAAAS

>Z

Atr=a: ¢ =&,
or or

0v_(r) o (r)
00 00~

03/26/2025 PHY 712 Spring 2025 -- Lecture 25


Presenter Notes
Presentation Notes
Analyzing the source of re-radiation, we need to recall how a spherical dielectric of radius a interacts with a constant electric field.   We can use the results we obtained in Chapter 4 when we considered the situation as an electrostatic boundary value problem.     Here the z direction is the direction of the incident electric field, not the wave vector direction.


Boundary value problems in the presence of dielectrics
— example -- continued:

°° Z Atr=a: ¢ 8CD<(1'):£O 8(D>(r)
ZAlr B cos<9 or or
00 (r) _ 0@, (r)

i(m A 0 = o

=0 For r — o0 CD>(r): —E,rcost

Solution - - only / =1 contributes
B =-FE,

4= 3 E, C = &l&,—1 O,
2+¢/¢g, 2+¢/g,



Presenter Notes
Presentation Notes
These are the results from the electrostatic case discussed previously.


.

cp<<r>=—[ :

Boundary value problems in the presence of dielectrics
— example -- continued:

24+¢/

q>>(r):_(r_(

&)

g/go—lijE osp P :47[61380(
0

2+¢le, )1’

&leg,—1

)EO rcos 6 Induced dipole moment:

&l&+2

jEO

v S

—2- €lgy=
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Presenter Notes
Presentation Notes
Continued results obtained previously for the electrostatic problem.


~ Estimation of scattering dipole moment:
Suppose the scattering particle is a dielectric sphere

with permittivity € and radius a: o
Note polarization

\;’0 notation change for
. > V. clarity.
:120 \Ai\.
_ 3 ‘9/‘90 —1 A ikk 1
p=4ra 80(5/5 +2]Emc E =v Ee™
0
Scattering cross section:
do (. ~ ~ . 7’2€"ESC2 k* A 12
—(r,v;ko,vo)z - L= ~[v- ‘
dQ V0 ) Einc (472-80E0)
le,~1[
Eley—1| |~ &
=k*a’ " Vv,
El&y+2



Presenter Notes
Presentation Notes
Jumping back to the scattering problem, assuming that the same mathematics can be translated to this case --     Here we have used bold nu to reference the polarization directions.    These directions are always perpendicular to the light propagation directions.     The epsilons indicate the permittivity functions which are functions of the harmonic frequency of the light involved.     The final result was derived by Lord Raleigh.


https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

WRITTEN BY: R. Bruce Lindsay
See Article History

Alternative Titles: John William Strutt, 3rd Baron Rayleigh of Terling Place

Lord Rayleigh, in full John William Strutt, 3rd Baron Rayleigh of Terling Place, (born November
12, 1842, Langford Grove, Maldon, Essex, England—-died June 30, 1919, Terling Place, Witham,

Essex), English physical scientist who made fundamental discoveries in the fields of acoustics and

optics that are basic to the theory of wave propagation in fluids. He received the Nobel Prize for

Physics in 1904 for his successful isolation of argon, an inert atmospheric gas.
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Presenter Notes
Presentation Notes
Some information about Lord Rayleigh on the web.

https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

S
Scattering by dielectric sphere with permittivity € and radius a:

A A For E;, . polarized in scattering plane:
kO
0
r d e —1]
O (A A & A E — A A |2
; (r,v,kh,vo)—::k4a6 0 Vv,
ol ~ d Q) /&y +2
Vv
A v 2
V gle,—1
0 =k*a® 0 cos’ O

/&y +2


Presenter Notes
Presentation Notes
In this analysis, we consider the case where the incident wavevector (along the vertical axis) and the polarization  direction (epsilon0) are in the same plane as the observed scattered light (direction of \hat{r}).    In this case , the dot product of the incident and scattered polarizations give a factor of cos(theta) as show.


S
Scattering by dielectric sphere with permittivity € and radius a:

For E;, . polarized perpendicular to

4 l’; scattering plane: )
0 &l&,—1

V-V,
El&y+2

/ > =k*a’ £/~
El&y+2

Assuming both incident polarizations are equally likely,

average cross section 1s given by:

2
—(f‘,\A’;lA(O,\ArO) :k42a6 j//j:;; (00826’+1)



Presenter Notes
Presentation Notes
In this case, the incident wavevector (along the vertical axis) and the observed scattered light (direction of \hat{r}) are as before and again define the scattering plane.   However, the polarization  direction of incident light (epsilon0) and the polarization direction of the scattered light (epsilon) are both perpendicular to the scattering plane and thus are parallel to each other, given 1 for their dot product.      The last result indicates the cross section of the total scattered light assuming both polarizations are equally likely.


S
Scattering by dielectric sphere with permittivity € and radius a:

Tk
0 " 4 6 . 2
d—a(f',f’;kofo) _Kka|ele -] (cos26’+1)
0 d(d 2 |e/gy+2
l" A
80 R 2.I}—_
/ & .
0
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Presenter Notes
Presentation Notes
The plot shows the angular dependence of the scattered light as a function of the angle theta.
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Presenter Notes
Presentation Notes
In addition to the angular dependence of the scattered light, Raleigh scattering depends of the wavevector as k4 which has the corresponding wavelength dependence indicated on this slide.       The figure from the web shows the variation of wavelength for visible light.   The analysis of Raleigh scattering thus tells us why the sky at mid day is blue and why it tends to be red at sun rise and sunset.


®
Brief introduction to multipole expansion of electromagnetic

fields (Chap. 9.7)

Sourceless Maxwell's equations

—la)t

in terms of E and H fields with time dependence e
VxE=ikZ/H VxH=—kE/Z,

V-E=0 V-H=0

where k=w/c and Z,=./u, /€,

Decoupled equations:

(v2 +k2)E:0 (v2 +k2)H:O
H=—_' VxE oyl
kZ, k


Presenter Notes
Presentation Notes
In the next few slides, we go over material presented in Section 9.7 of your textbook.     I have personally never used this formalism, but recognize it as a powerful tool for analyzing fields from localized sources in terms of the fields themselves rather than using scalar and vector and scalar potentials.  Please review this material as time permits.


Multipole expansion of electromagnetic fields -- continued

Note that:
(V?+ £*)(r-E)=0 (V?+ &) (r-H)=0

Convenient operators for angular momentum analysis

Define: El(rxV)

i
Notethat r -L=0

v _l@zr B L
rort  rt

Eigenfunctions:

: [ e oy 1 @ _
L'Y,,(0.9) = Lin o Q(mn@ 89} — 3 ¢2}Ylm<a¢> (L +1)Y,,(0.9)



Multipole expansion of electromagnetic fields -- continued

Magnetic multipole field:

[([+1
oy =l p ey, 0.9
r -EY =0 spherical Bessel function

L-E,, =/(I+1)Z,gkn)Y,,(6.4)

Electric multipole field:

1(1+1)
k

r -E, =-Z,

J&)Y,,(0,9)

spherical Bessel function

r -H =0
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Multipole expansion of electromagnetic fields -- continued

Vector spherical harmonics: (for /> 0)
1

X, (8,0)= LY, (6,

m(0,9) T m(0,0)

Orthogonality conditions:
.. dQ Xl'm'* (9’ ¢) . le (99 ¢) = 5]!'5mm'

[a2X,, (0.9)-(rxX,,(0.4))=0

General expansion of fields:

H :z{amkzﬁ)xm(e,m—éa%Vx(gxkﬂsz(@@)}

E= ZZ{% a,, V x( f,(kr)X,,(0,4))+a,, g, (kr)X,, (0, ¢)}



Multipole expansion of electromagnetic fields -- continued

Time averaged power distribution of radiation far from source:
2

dP  Z,
aQ  2k* |5
For a pure multipole radiation with either a,, or a,’ :

> ()" a5 X, (0,8)xE +a X, (0.4) ]

dP 7
10 2% 4| X, (0.0

1
X @9 = 5 (2 I (e m

2

+(I=m)(l+m+1)|Y,,

)




For example: /=1

X, (8,0) =—sm . X,,(60,0)" =|X,,(6,9)| = (1+cos 0 )
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For example: [ =2

X, (6, ¢)‘ —sm 20 cos’0  |X,,(6, ¢)‘ = (1 3cos’ @+ 4cos’ 9) ‘X22(9,¢)‘2 =i(1—cos4¢9)
lérx

03/26/2025 PHY 712 Spring 2025 -- Lecture 25 35



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

