PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 28:

Finish Chap. 11 and
begin Chap. 14 (Sec. 14.1-14.3)

A. Electromagnetic field transformations &
corresponding analysis of Liénard-Wiechert
potentials for constant velocity sources

B. Radiation by moving charged particles
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Presenter Notes
Presentation Notes
In this lecture we will continue to discuss the electromagnetic fields produced by a moving charged particle using the Lienard-Wiechert potentials.   First we need to make sure that we obtain consistent results with Lecture 27.   Then we will start to discuss the results from more general trajectories.


4 Colloquia possibilities in the next 3 days

Wed. Apr. 2, 2025 — Professor Fan Yang, Department of Computer Science, Wake Forest University- “Towards
Conceptual Understanding of Large Language Models" (Host: N. Holzwarth)

Thurs. Apr. 3, 2025 — Ph.D. Defense: lan Newsome — “Semiclassical Effects in Curved Spacetime and Quantum
Electrodynamics” — Olin 107, 9:00 AM (Advisor: Prof, P. Anderson)

Thurs. Apr. 3, 2025 — Special Colloquium on Perspectives in Physics, Professors Paul Anderson and Natalie Holzwarth

Friday Apr. 4, 2025 — Ph.D. Defense: Leda Gao — “Extracting information from black hole merger simulations: The
robustness of quasinormal modes’ — Olin 107, 10:00 AM (Advisor: Prof. G. Cook)
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24 \Mon: 03/24/2025 Chap. 9 Radiation from time harmonic sources #20 103/26/2025
25 Wed: 03/26/2025 |Chap. 9 & 10 Radiation from scattering #21  03/28/2025
26 Fri: 03/28/2025 Chap. 11 Special Theory of Relativity #22 03/31/2025
27 Mon: 03/31/2025 |Chap. 11 Special Theory of Relativity #23  04/02/2025
28 Wed: 04/02/2025 |Chap. 11 Special Theoy of Relativity #24 04/04/2025
29 Fri: 04/04/2024  |Chap. 14 Radiation from accelerating charged particles
30 Mon: 04/07/2025 |Chap. 14 Radiation from accelerating charged particles
31 \Wed: 04/09/2025 Chap. 14 Synchrotron radiation and Compton scattering

32 Fri: 04/11/2025 |Chap. 13 & 15  |Other radiation -- Cherenkov & bremsstrahlung

33 |Mon: 04/14/2025 |Special Topics

34 Wed: 04/16/2025 |Special Topics Cléss time
3% Fri: 04/18/2025 Presentations | sh\ifted to
Mon: 04/21/2025 |Special topics
Wed: 04/23/2025 Presentations ||
Fri: 04/25/2025 Presentations |lI
36 Mon: 04/28/2025 Review
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PHY 712 -- Assignment #24

Assigned: 4/02/2025 Due: 4/04/2025

Finish reading Chapters 11 in Jackson . This problem concems a proton having rest mass energy mc?=938.272 x 109 eV
moving at constant speed v along the x-axis (or 1-axis) as shown in Fig. 11.8 of the textbook and equivalent figures in the
lecture notes. For each of the following situations find the maximum value of electric field Ey ( or £5) produced by the proton

as observed in the stationary frame, in units of g/b?.

1. Inthis case, v=0.1 ¢ where ¢ denotes the speed of light in vacuum.
2. In this case, the proton is processed by a large accelerator facility such as the Fermi National Laboratory and has a total

energy of 374 x 10 eV
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Comment. Some of you have been looking at textbooks
(such as Zangwill) and sources available on the internet and
finding different equations from those presented in these
lecture notes and in Jackson. That is a good thing in
general, however please be aware that there are different
units (Sl for example) and different conventions for 4-
vectors (some using different ordering of space and time,
some using imaginary (i) for the time-like portion). Since
we are using Jackson for now, it will be good to make sure
that you are OK with Jackson’s equations and those in the
lecture notes as well.



Solution of Maxwell’s equations in the Lorentz gauge — review

using Sl units for now --
Liénard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge g moving on a trajectory R(f).

Charge density: p(r,1)=¢é" (r—R (1))
dR (?)

Current density: J(r,?) =g Rq (O3 (r-R (1), where Rq () = ”

R (1)
o )




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

D(r.0)= rdt 'p(r 5(t'—(t=r=r'|/c))
r—r' |
A(r,t) = _ ”d3r'dt"](r ’t')5(t'—(t—|r—r'|/c)).

472'606’ r—r'|

We performing the integrations over first d°r’ and then dt’
making use of the fact that for any function of ¢/,

& f(t)
dt' f"o(t'-(@—|r—R (t"|/c))= : A :
L. ( (11) R, @) r-R,))
clr—=R_(z,)]
where the " ‘retarded time" is defined to be

- R,(0,)|

C

[ =1 —




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Resulting scalar and vector potentials:

q |
D(r,t) = ’
(r ) 472'60 R_V. R
C
q Vv
A(r,t) = ’
(r,?) 47TEOC2R_V°R
C
Notation: R =  — Rq(tr) r— R (1,)]

[ =t

r

V=R, (), :




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

In order to find the electric and magnetic fields, we need to

luat
evaluate E(r.1) = -V(r.1)— 8A;‘,t)

B(r,t)=VxA(r,t)

The trick of evaluating these derivatives is that the retarded
time t. depends on position r and on itself. \We can show the
following results using the shorthand notation:

r

Vi =-— = .
c(R—VRj and ot (R— CRj

R ot R
V.

C



Solution of Maxwell’'s equations in the Lorenz gauge — Sl units

2 .
—VO(r, 1) = — L IRr[1-2 —Z(R—V RJ+RV2R ,
4re, (R V.R) c c c c
c
_O0A(r,t) ¢ 1 VR vz_V-R_\'f-R _\"R(R_V-R
ot 4re, (R V- RT c\c® Re ¢’ ¢’ c
c
2 -
E(r,t) = c : 3 (R—ﬁ l—v—2 +| Rx (R—ﬂjx% :
472'60( V.Rj C C C
R—
c
B(r./) = q : —Rxv 3(1_ V-sz_ Rxv/c : :RxE(r,t)
dre,c (R_V.Rj C (R_V.Rj cR
c c




Convert to cgs Gaussian units:

E(r,1) = 3RjKRij£12j+[R{(Rij:m

R_
C
_ 2 v-R R x©
B(r,t):g Rxv 3[1_\/2_|_V2 B xVv/c :
C : C C :
(R_V Rj (R_V Rj
E
B(r,t)szR(r’t).

Note that this analysis is carried out in a single frame of
reference. Now we resume our discussion about
transforming values between two different inertial frames of
reference.



. Convenient notation :
Lorentz transformations

.
ﬂ v o C
y = 1
\% 1 B ﬂvz
y y’ Stationary frame Moving frame
A
4 ct =y, (ct'+Sx")
X =y, (x+Bct"
=\ v
X = Y
N . 4
X Y z = Z
Y S
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Presenter Notes
Presentation Notes
We will continue to use the stationary and moving reference frames introduced in the previous lecture.     In this case, the relative motion is along the x-axis.   Of course, there is nothing special about this choice, but we will use it throughout this lecture.


Lorentz transformations -- continued

For the moving frame with v =vX :

(v, B,
£ - vB 7
0 0
. 0 0
(ct) (et
X x'
=L| "
Y Y
\z) \Z
Notice:

2,2 2 2
ct —x —Yy

0

0
1
0

2 2.2 2 2 2
-z =ct"—x"—y" -2

o = O O



Presenter Notes
Presentation Notes
This slide reviews the transformations of the time and position 4-vector.


“ Field strength tensor

F% =(04” —6" 4%)

( 0 _Ex _Ey _Ez\ 0 _va _Evy _EvZ
Faﬂ _ Ex O _BZ By F'aﬂE E'x O' _Bz B)'/
E, B. 0 =B, E'" B. 0 -B'
E. _.By B.x 0 E'. -B', B, 0
Transformatioh of field stre gth tensor
(7. 7B 00
Faﬁ:.eayFWé‘Bgﬂ .B _ 7/vﬂv yv O O
’ ’ ’ 0 0O 1 O
0 0 0 1,
O _E'x _?/V(E'y-i_ﬂvB'Z) _7/\/ 'Z_ﬂVB'y)
Faﬂ: E'x O _?/V(B'z—l_ﬂvE'y) 7/\)( 'y_IBvE'Z)
7/\/ (E'y +IBVB'Z) 7/\1 (B'z +IBVE'y) O _B'x
7 (E 'Z—ﬂvB'y) -7 " —PE 2 B 0



Presenter Notes
Presentation Notes
Lecture 28 introduced the field strength tensor.


.

Inverse transformation of field strength tensor

v, —rnp, 00
B — p-lay s p o198 £l =75, Yy 0 0
’ ’ ’ 0 0 1 O
0 0 0 1
0 -E, -r.(E,-B.B.) -7.(E.+BB,)
v E 0 -7,(B.-BE,) 7,(B,+BE.)
7(E,~BB.) 7(B.-BE,) 0 -B,
7.(E.+BB,) ~r.(B,+BE.) B, 0
Summary of results:
E' =E, - B,

E' =7v(Ey —ﬂsz)

B'x
B',=y,(B,+BE.)
E.=y(E+pB) B



Presenter Notes
Presentation Notes
Review of the Lorentz transformation for the field strength tensor --


S
Example:

Fields in moving frame:

, A n —vt'X + by
E :’%(X Xty Y): ((q_(w')z +b2)}37/)2

B'=0

> X > X’

7z «/ Z°  Fieldsin stationary frame:

E =E' B =B'"
E =y, (E'y +,BVB'Z) B, =7, (B'y -p.E )
E.=y(E.-pB) B.=7,(B.+B.E)

4/2/2025
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Presenter Notes
Presentation Notes
This is the example that we have been studying from Lecture 28.


.

Example: Fields in moving frame:
' q 13 13 Q(_Vt'ﬁ+b§7)
S E=—'(xx+yy):
y |V e (—vey +52)"
— —) B'=0
4
b
q J
- > X > X
, Fields in stationary frame:
y Z
g 4
x T x /2
(—vep+27)
. q(7.b)
E =y \L' )= k
y ( y) ((_ W')2 e )3/2

B =plpe ) A

1\2 2 /2
. (— vt ) +b
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Presenter Notes
Presentation Notes
Using the fields from the moving frame, we can write the expressions for the fields in the stationary frame.


.

Example: Fields in moving frame:
' q 13 13 Q(_Vt'ﬁ+b§7)
) S E'=—(x'X+)'y)=
y | Y Rl
— ) B'=0
4
b —
q J
- > X > X
, Fields in stationary frame:
y Z
e )
C T ey er)”
Expression in terms of 7o (E' )_ q(y.b)
consistent coordinates y TIEL)E ((_th)z +b2)3/2
B, = 7/v(:BvE'y): Q(yvab)z /2
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Presenter Notes
Presentation Notes
Here the fields measured in the stationary frame are expressed in terms of the time t measured in the stationary frame.


e anb) q(7,b)
' ((—vyvt)z +b2) (72 1) +p’

Plot with g=1; b=1 y, as given
5
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Presenter Notes
Presentation Notes
This is a plot shown in Lecture 27 of Ey as a function of time.


.

Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

E(r.) - ‘quj KR‘%XI_;}(RX{R_ ijf}ﬂ

R
c



Presenter Notes
Presentation Notes
Now we consider how we may arrive at the same result without changing reference frames by analyzing the EM fields produced by a moving charge using the Lienard-Wiechert analysis.


Question — Why would you want to use the Liénard-
Wiechert potentials?

1. They are extremely complicated. It is best to avoid
them at all costs?

2. The Lorentz transformations were bad enough??

3. Lienard-Wiechert potential formulation can analyze
EM field from accelerating sources while the
Lorentz transformations are designed to analyze
measurements in reference frames moving at
constant velocity.



B o .
Analysis using a single reference frame --

Variables (notation) :
Radiation from a moving charged particle
. dR (t.)
R, ()= "0 =
A Z dl‘,,

X
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Presenter Notes
Presentation Notes
Here we consider a charged particle (charge q) moving along the red trajectory.   The vector r indicates the point at which we will evaluate the fields.   The retarded time tr is defined here.


Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

Note that for our example there

E(r,t) = 9 : {(R_ﬂ) [l_éﬂ are no acceleration terms.
j c

r_VR ¢ For our example:

¢ ) R (t)=vtX r=by
) R=r-R (¢,)=by—vt.Xx
q —Rxv 1%
B(r,r) == 1-—
(r:0) ¢ ( V.RI[ 02] R=V+b v=1% t,,:t—ﬁ
R - C
c
This should be equivalent to the result given in Jackson (11.152):
—vyitX + yby
E(x,7,2,6) =E(0,b,0,0) = g— 3
(67 +(vyt)’)
bz
B(x,y,z,t)=B(0,b,0,t)=¢q 5 7P N
(67 +(vyt)’)
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Presenter Notes
Presentation Notes
In our case, the trajectory of the moving particle is  described as constant velocity  along the x-axis while the fields are measured at the fixed point b along the y axis.


Example geometry
For our example:

4 y y’ Rq(tr):‘}tri r=b§’
R=r-R (¢,)=by—vtx
2.2 2 A R
v R=\VE+b v=vk 1 =1-—
- C
q
- > % > X’
z/Z

Trajectory within stationary frame — R _(¢,)=v,X r

This choice allows us to analyze the Liénard-Wiechert
approach (within the “stationary” reference frame) of the
same phenomenon solved previously using the Lorentz

transformation. Because of the geometry E, is zero here.

4/2/2025 PHY 712 Spring 2025 -- Lecture 28
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Why take this example?

1. Complete waste of time since we already know
the answer.

2. If we get the same answer as we did using the
Lorentz transformation, we will feel more
confident in applying this approach to study
electromagnetic fields resulting from more
complicated trajectories.

Note that it might be advisable to derive the details of
the analysis for yourselves.



Some details

g.Rj{(RVfJ@ziﬂ

R —

c For our example:

i i R (z)=vtx  r=by
R 2 S _ [,242 2
B(r,t)zg XV 3(1_\/_2] R =by—vt X R \/v t"+b
C v-R C
(R— j vV =1X t,=t——
} ¢ _ c

t. must be a solution to a quadratic equation:

3 PR SN =2yt +y’tP—y’b* 1 c* =0
C

R Vb

with the physical solution: Note that (z. — 1)2 —
2 2
. :y[ﬂ_\/(vﬂ) +b ] 1 2
C

2 2

2
C

2
C



Some details continued: Now we can express R as:

R = 7/(—,Bv7/t + \/(V)/t)2 +b’ )

and the related quantities:

R—ﬂ:—vti+b§7
c

R_V-R - \/(vyt)2+b2
C Y

E(r,t) = c 5 {(R—ﬂj [l—éﬂ =q :v}/ti+72b§37u
(R_V'R) ¢ ¢ (67 +(vr)?)



Presenter Notes
Presentation Notes
When the dust clears, we do verify the E and B fields obtained using the Lorentz transformation.  Hurray!


%M fields from a moving charged particle

Variables (notation) :
Back t | -- - dR \t,
ack to general case R, (t,,)= q( ) _ v
A Z dl‘,,

X
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Presenter Notes
Presentation Notes
With this success, we are motivated to apply this approach to more general particle trajectories.


.

Liénard-Wiechert fields (cgs Gaussian units):

E(r,r)—(Rz,CRT HR‘%XI_;}(RX{R_ijxctm

B(r, )= 4| RV [1_V2+V-R]_ RxV/c
| C(R_V'Rf ¢ (R_V-Rjz
_ & c ]
B(r,1) = RXF;("J),
Notation:
' R d’R
R,(t,)= dqt(t,,)zV R()=r-R, (1, )=R V= dqz(tr)
{


Presenter Notes
Presentation Notes
Here we review the equations from the Lienard-Wiechert analysis.    We particularly notice that for the fields very far from the particle positions, the dominant terms are those which involve the acceleration of the particle.


Electric field far from source — keeping only dominant terms

("’t)g ] ){RKRRJ}}

q
v:-R
C
xE(r,t)

E
B
()= E



Presenter Notes
Presentation Notes
These acceleration terms are given here.    These are the terms that we will focus on.  Here we define a unit vector Rhat.  Jackson calls this vector n.    In principle, this unit vector varies in time, but at large enough distances from the source, it is an approximately constant unit vector.


Poynting vector:

S(r,t) = i(ExB)

Note: We have used the fact that
R E(r,t)=0



Presenter Notes
Presentation Notes
In addition to calculating the fields themselves, we will be interested in calculating the Poynting vector due to the fields in the radiation zone.


2

Power radiated , R x _(f{ _ B) « B}
C A 2 q a _
S(r,t)=—RI|E(r,¢) = -R -

4 4wcR (l—Bli)
\
| (R-B)<b |
A » IRx| (R= xﬁ]
Z—S:S-RR2:4CI ——
e _R.
1-B-R)
In the non-relativistic limit: £ <<1
P A Fa TP ? .
d _ 4 RX[RXB] -4 3‘V‘2sm2®
dQ) 4rc 4rc

where ﬁ-BE,BCOS@


Presenter Notes
Presentation Notes
After some algebra, we arrive at the expression for the power radiated per unit solid angle.    We will examine this result more in detail next time, but for now, we will consider the result in the non-relativistic limit when beta is nearly 0.


%adiation from a moving charged particle

Variables (notation) :

X
4/2/2025 PHY 712 Spring 2025 -- Lecture 28 33


Presenter Notes
Presentation Notes
This slide attempts to show the geometry of the trajectory and fields.


Radiation power in non-relativistic case -- continued

Blue arrow indicates the
particle acceleration direction
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Presenter Notes
Presentation Notes
Here we illustrate the non-relativistic power distribution, showing that the radiation intensity is concentrated in the directions perpendicular to the particle acceleration.     Next time we will see how relativistic effects change this radiation pattern.


What do you think will happen when the particle velocities
become larger with respect to the speed of light in vacuum?

1. The radiation pattern will be essentially the same.
2. The radiation pattern will be quite different.
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