PHY 712 Electrodynamics
9-9:50 PM MWF Olin 103
Notes for Lecture 29:
Radiation by moving charges
Chap. 14 — (Sec. 14.1-14.5 in JDJ)
1. Motion in a line
2. Motion in a circle

3. Spectral analysis of radiation
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Presenter Notes
Presentation Notes
In this lecture, we will continue discussing the material presented in Chap. 14 of Jackson’s textbook on the subject of radiation from moving charged particles.


Mon: 03/24/2025

24 Chap. 9 Radiation from time harmonic sources #20 103/26/2025
25 (Wed: 03/26/2025 |Chap. 9 & 10 Radiation from scattering #21  103/28/2025
26 |Fri: 03/28/2025 |Chap. 11 Special Theory of Relativity #22 103/31/2025
27 (Mon: 03/31/2025 |Chap. 11 Special Theory of Relativity #23  |04/02/2025
28 |Wed: 04/02/2025 |Chap. 11 Special Theory of Relativity #24  104/04/2025
29 [Fri: 04/04/2024 |Chap. 14 Radiation from accelerating charged particles  [#25 |04/07/2025
30 (Mon: 04/07/2025 |Chap. 14 Radiation from accelerating charged particles
31 (Wed: 04/09/2025 |Chap. 14 Synchrotron radiation and Compton scattering
32 |Fri: 04/11/2025 |Chap. 13 & 15 Other radiation -- Cherenkov & bremsstrahlung
33 (Mon: 04/14/2025 |Special Topics
34 (Wed: 04/16/2025 |Special Topics
39 |Fri: 04/18/2025 Presentations |

Mon: 04/21/2025 |Special topics

Wed: 04/23/2025 Presentations

Fri: 04/25/2025 Presentations IlI
36 Mon: 04/28/2025 Review
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PHY 712 -- Assignment #25

AssignED: 4/04/2025 Due: 4/07/2025

Continue reading Chap. 14 (Sec. 14.1-14.6) in Jackson . This problem is designed to demonstrate Parseval's
theorem using the definitions given in the lecture notes and on Page 674 in Jackson. We will use the example

Alt)=K e T
where K and T are positive constants.

1. Find the Fourier transform of A(t).
2. Evaluate the integral of the squared modulus of A(t) between -« <t < «,
3. Evaluate the integral of the squared modulus of the Fourier transform of A(t) between -« < < =,
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%adiation from a moving
charged particle Variables (notation): R_ (¢, )= =v

,}Z

X
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Presenter Notes
Presentation Notes
Here is the general diagram we have been using to denote the field point r and the trajectory R_q(t).


Lienard-Wiechert fields (cgs Gaussian units):

o= g () 0-2) (o (0 ) < 2))

(19)
— 2 - .
Blr.f) = _ RXV3(1‘2+V2R)‘ Rovie | (o)
A A
In this case, the electric and magnetic fields are related according to
B(r.f) = Z ), 1)
R
: dR |t IR (¢
Rq(tr)z dq(’”)EV R(tr)El’—Rq(tr)ER V= dqz(r)
[, 3
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Presenter Notes
Presentation Notes
Review of the E and B fields produced by the moving charged particle.


Comment --

B(r,1)

_ 4
C

P “?2 Y . y
v Rj}:’)g (1 -+ "CQR) - (;{ X:’}/{‘;Ql Qo)

In this case, the electric and magnetic fields are related according to

_ R x E(r,?)
— -
Note that (21) can be demonstrated by evaluating R x E(r,{)

B(r,t) (21)

Other helpful identities: ax(bxc)=b(a-c)-c(a-b)
a-(bxc) = b-(cxa) = c-(axb)



Electric field far from source:

I Y Y

R —

¢ Note that all of the variables
_ RxE(r,¢) on the right hand side of the
B(r,t)— :
R equations depend on ¢, .
dR R (¢
Rq(tr)E Cj’tftr)zv R(tr)Er—Rq(tr)ER tr:t_‘ (Cr) ZZ‘—R(CIF)
Let R= R B= A B= A
R C C

E(r,t)= cR(1_q|3.f<)3 {f{x[(ﬁ—p)xfs}} B(r,t)=RxE(r,t)
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Presenter Notes
Presentation Notes
Specializing the equations to fields in the radiation zone.


®
Poynting vector:

S(r.t) =, (ExB)

cR(1-p-R) }
B(r.t)=RxE(r;t)  Ex(RxE(r,r))=R[E[ ~E(R-E]
()= R - R LR
1P R)

Note: We have used the fact that

R-E (r, t) =0 which follows from the vector 1dentities.


Presenter Notes
Presentation Notes
Evaluating the Poynting vector for the radiation zone.


Power radiated

S(r, ) :iR E(r,) = 47zch2 R (1—ﬁ-ﬁ)6
oo [l

%:S'Mz } ﬁw (1-p-R)

In the non-relativistic limit: A <<1

Zg ) 4q7z2c Rx[Rop] - 47q:c3 ¥ sin’®


Presenter Notes
Presentation Notes
The general expression for the power per unit solid angle.    The last expression represents the result in the non-relativistic limit.


%adiation from a moving charged particle

Variables (notation) :
Rq(tr)z dRq(tr) =V
A Z dt .

When v<<c:

dpP g’
dQ 47zc M sin’ ®
/ y

X
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Presenter Notes
Presentation Notes
Diagram showing geometry of previous equations.


Radiation power in non-relativistic case -- continued

dP ¢’

Q- 47zc s|¥f"sin”©

p=[aof 24 |
daQ 3¢°


Presenter Notes
Presentation Notes
Integrating the expression for the power over solid angle gives the total power.    On this slide, the non-relativistic expressions are given..


Radiation distribution in the relativistic case
dP ~ g’

i R RP)B]
d () 4drc (I_B,f{)

This expression gives us the energy per unit field
time t. We are often interested in the power per
unit retarded time t=t-R/c:

dp(t) _dP(t) di dr . B.R
aQ  dQ dr dt.
() o R (R-)<]

dQ) 47c e D)
1-BR)

t.=t—R/c


Presenter Notes
Presentation Notes
What happens to the complete expression, particularly when the relativistic effects are numerically significant?       For this, we follow Jackson’s approach and measure the power with respect to the retarded time.  Please make sure that you check the derivation of the equations on this slide.


Some details —

The power derived from the Poynting vector in terms of the field
times 1s given by:

2
AL _srp2 =4

IA{X[(IA{—B)XBT
dQ)  4rc (1—B-ﬁ)6

t.=t—R/c

The integrated power would be given by

W= fai = eilV) = far,C dP(t.)
d ()
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More comments

~ F-R,(1)
t =1t—
C
) \r—Rq(t,,)\
t=t +
C
di_y (LRG| TR o
dt, cdr \r—Rq(t )
() o [R[(R-B)<i]
9 dQ _47Z'C fl—l}-f{)s

t.=t—R/c



.

Why do you think it useful to measure the power as
energy per unit retarded time P.?
1. Jackson likes to torture us.

2. There should be no difference.
3. 777


Presenter Notes
Presentation Notes
What do you think?


Radiation distribution in the relativistic case -- continued

(1) _ ¢’ Rx|(R-)<B|
dQ _47Z'C (I—B-ﬁ)s
For linear acceleration: BxB=0
) Rox(Rox )
iQ ( )5

t.=t—R/c

t.=t—R/c



Presenter Notes
Presentation Notes
First we will consider the case of linear acceleration.    Since the velocity of the particle and its acceleration are in the same direction, the cross product is 0.  The retarded time power distribution can be shown to have the form given in the last equation of the slide.


.

Power distribution for linear acceleration -- continued

d})r(tr)_ q’ ﬁX(RXB) _q M sin” 6
dQ  4zxc (l_ﬁ.f{)s Az (1- Bcos@)
t.=t—-R/c
2
B(tr)zjdg(tr)dﬂzzq M where y = :

dQ) 3¢ 1- 57


Presenter Notes
Presentation Notes
Summary of results for the linear acceleration case.


.

Power from linearly accelerating particle

2 ﬁ (R X ) 2 . 2
dP.(t,) q p g 5 sin” @
o 5 - 3 5
d() ( ) 4rc (l—ﬂcos@)
t.=t—R/c
_ B=0.7
20
15
m—:
5 Bzo
I:II__'I# T I T I T I T I I__——I_—-_-'_ I I I T I
0 20 40 50 80 100 120 140 160 180
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Presenter Notes
Presentation Notes
This plot illustrates the sensitivity of the retarded time power distribution to the value of beta.


S
Polar plots:

Note — two separate plots are introduced in order to see
the drastic change of scale at values of 3 close to 1.
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Presenter Notes
Presentation Notes
Polar plot of the previous results.  


>
Power from linearly accelerating particle

Ao 2
d})r(tr)_ q’ RX(RXB) _q M sin” 0
dQ  4xc (1_B,ﬁ)5 47> (1-BeosO)
t.=t—R/c
dP.(t.) 2 q° 1 E
Pr(tr)zj o dQ_gc_M y° where y = 5 =
loglo(%jl/)): iz:



Presenter Notes
Presentation Notes
Integrating over solid angle, we obtain the total retarded time power radiated,    finding it to vary as gamma6.   The logarithmic plot shows the gamma dependence.    


Power distribution for circular acceleration

Note that, following
Jackson, these are not
r the standard spherical
polar angles.

0 > v~ . 12
() _ ¢ R (R-B)<6
X dQ drc (1—'3 ﬁ)s
g B-pR) (R B) (1-7)
drc (I—B-IA{)S
P.(t,)=]do dl:}g") =%Z—3M2 y!

t,=t—R/c


Presenter Notes
Presentation Notes
Now consider the case where the acceleration is perpendicular to the instantaneous velocity as in the case of circular motion.     In this case,  the retarded time power depends on gamma4.     Check whether you agree with this result (or not).   Note that in this diagram the polar angle is not the conventional one.


Summary of results --For linear acceleration --

X
AN
n() g RARPBY| g o sinte
dQ  4xc (l_p,ﬁ)s 47zc (1—,8005(9)5
t,=t—R/c
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Power distribution for circular acceleration

Z

t.=t—R/c

7 Mz . cos” @sin’ ¢
4rc (1-p cos(6’))3 y (1-p 005(9))2



Angular integrals for the two cases —

Linear acceleration

P,,(tr)=IdB( )

2Sln 60 dsin@ 2q ‘ ‘

dQ) = 271_‘- 47zc (l—ﬂcos )

Circular acceleration

:de,(tr) Q:jd¢dsin«9 q23 \ii |- cos’ @sin’ ¢ :
dQ 4re’ (1- Beos(0)) 7> (1— Bcos(9))



Power distribution for circular acceleration

Z

t.=t—R/c

7 Mz . cos” @sin’ ¢
4rc (1-p cos(6’))3 y (1-p 005(9))2


Presenter Notes
Presentation Notes
Some more details.        This concludes the discussion of the geometry of the radiation.    In the next several slides, we will start to discuss  another aspect of the radiation, namely its spectral distribution.


= Spectral composition of electromagnetic radiation
Previously we determined the power distribution from

é(ctgarged i:)arzticle:q2 R [(f{ B B) y ﬁ} 2

=S - RR = - Note: Here we are
dQ Arc 1— B R flndlpg power wrt to
the field time frame.
t.=t—R/c
2
=|a()

o8]

4rc (I_B'ﬁf

where  ((¢)

t.=t—-R/c
Time integrated power per solid angle:

W _ ]Odt (1) Tdt\a f (e ‘2



Presenter Notes
Presentation Notes
Now we will return to the power measured with respect to the field time (as opposed to the retarded time).     In this way will be able to use the beautiful mathematics of Fourier transforms to analyze the spectral properties of the radiation.     Here we imagine that the radiation is measured  at a given location for a long period of time so that we will want to evaluate the time integrated power W.


)
Spectral composition of electromagnetic radiation -- continued

Time integrated power per solid angle :

o0

j j diac) = ];da)‘d ()

Fourier amphtude ;

n~~/

a(w)zﬁj dr @(t) e [des @(w)

1
U\t)=—
(¢) ;7d
Parseval’'s theorem

Marc-Antoine Parseval des Chénes 1755-1836

http://Iwww-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html



Presenter Notes
Presentation Notes
Here we make use of the Parseval’s theorem which allows us to relate the time integral of the power to the frequency integral of its Fourier transform.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html

Checking:

Fourier amplitude:

() E% [ a(e) e

zdt\a jd{fz
[aodio)]awa
[ 40 (o) ] 0rd

Amplitude in time:

—iwt

%Tda)d 0]
’“”j(%?da)' a (o eiw"j

i

a) a)) Tda)

—00

a(t)=

(o)




)
Spectral composition of electromagnetic radiation -- continued

Consequences of Parseval's analysis:

—_jdz 5 jdr\a jda)
Note that: d( ) = d*(—w)

. ) B ) i 0 2
Z_Z: j do|d(o) = j dw( (o) + “(—‘0)\2) E! dmag;w
0’1
0Q0w

=2

‘ 2

()



Presenter Notes
Presentation Notes
Mathematically,  the theorem involves integrals over all frequencies, while physically negative frequencies are not measured.     By using the fact that the power amplitude must be real (mathematically),   we can then derive a formula for the intensity I as a function of frequency and solid angle.


o0°1
Qow

?

What is the significance of

1. It is purely a mathematical construct
2. It can be measured



Spectral composition of electromagnetic radiation -- continued
7 Rx[(R—B)x[}]‘
drc (1 —B- ﬁ)3

For our case: a(t)=

t.=t—R/c

Fourier amplitude°

d(w)= joodt e (1)

\/7 j dt &

R>< —p)x[}]
1 B R)

t.=t—R/c


Presenter Notes
Presentation Notes
Here we analyze the power amplitude in order to take its Fourier transform.      Apparently, if we can evaluate this integral, we can determine the intensity spectrum. 


Spectral composition of electromagnetic radiation -- continued

Fourier amplitude :
()= ﬁ]idt a(t) e
) q_z2 sz R x [(R—B)x B] »
87°c (I_B.ﬁ)’ e
ki

t,=t—R/c


Presenter Notes
Presentation Notes
The integral must be performed over the field time, but the argument of the integral is expressed in terms of the retarded time.    Fortunately, we can use the relationship between the two in order to perform the actual integral in terms of the retarded time.


Spectral composition of electromagnetic radiation -- continued

Exact expression :

t ﬁx[(ﬁ—ﬁ)xl}] ol +R(,)/c)
2 J 4 (1_Bﬁ)2

Recall: R_(z,)

i
i
<
re
—~~
=~
~—"
i
=
I
7~
Q
—~~
=~
~—"
i
7o

For r>>R (t) R(t.)=r-r-R_(t,) where p=l
r

N

At the same level of approximation: R =r


Presenter Notes
Presentation Notes
Here we make use of some approximations valid far from the source.


Spectral composition of electromagnetic radiation -- continued

Exact expression:

: T R (R-B)<B)|
a (C()) _ q 2 J’ dtr ( )2 eza)(tr +R(1,)/c)
STcC b 1— B , f{)
t.=t—R/c
Approximate expression
()= qzz "' T dr, PP j B] gl PR ()e)
87°c (1-p-r)
t.=t—R/c

Resulting spectral intensity expression:

0’1 _ qz Tdf f'x[(f‘—[})x[}]‘ eia)(l‘r—f’-Rq(tr)/c)
0wdQ) 4r’c|® (1_ﬁ.f)2

t.=t—R/c



Presenter Notes
Presentation Notes
Summarizing the approximations.


Example — radiation from a collinear acceleration burst

0’1 _ q2 szdl‘ fx[(f_B)XB:H eia)(tr—f'-Rq(tr)/c)
0woQ) 4rn’c|? 7 (1_|3.f-)2
t.=t—R/c
Pav O0<it <t

Suppose that p =1 o7

0 otherwise

2
227 e fx[f“xﬁ] Av
0wdQ 47’ | (1-p-i) ¢

2
T

J‘dtreia)(t,, —i-pt,.)

0

Letp-r=Lfcosb

2
1 ¢ [ Avsing  sin(wr(1- fcos8)/2)
0woQ  4r’c (1- ﬁcose)z (wt(1— L cosB)/2)



Presenter Notes
Presentation Notes
Here we consider an example of motion due to an abrupt collision.    This example is actually discussed at the beginning of Chapter 15 of Jackson.


.

Example:

Suppose that B = -

( A

0%l B q2

S

BAv

— O<t <7
CcT
0 otherwise
Avsin @

sin(wz(1— fcosf)/2)

000Q 47’ | (1- Beosf) (@7(1-Bcosb)/2)

Av

Example: “Bremsstrahlung” radiation
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Presenter Notes
Presentation Notes
This radiation is for example caused by a fast moving charged particle coming to an abrupt stop such as when it smashes into matter.    The value of tau depends on the matter and the particle.


Spectral composition of electromagnetic radiation -- continued

Alternative expression --

It can be shown that:

Ex[(F-B)xB] (
(1

(f'x[})j
(1-p-t)"  d | (1-B-F)

Integration by parts and assumptions about the integration

limit behaviors shows that the spectral intensity depends on

the following integral:

52 ‘0’| T A A iolt, -t-R_(t,)/c
o oo



Presenter Notes
Presentation Notes
Next time we will evaluate this expression for synchrotron radiation.
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